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Résumé: Les impératifs environnementaux
suscitent un regain d'intérét pour la recher-
che sur le contrdle de I'écoulement des fluides
afin de réduire la consommation d'énergie et
les émissions dans diverses applications telles
que |'aéronautique et |'automobile. Les straté-
gies de contrdle des fluides peuvent optimiser
le systéme en temps réel, en tirant parti des
mesures des capteurs et des modéles physiques.
Ces stratégies visent a manipuler le comporte-
ment d'un systéme pour atteindre un état
souhaité (stabilité, performance, consommation
d'énergie).

Dans le méme temps, le développement
d'approches de contrdle pilotées par les don-
nées dans des domaines concurrents tels que
les jeux et la robotique a ouvert de nouvelles
perspectives pour le contrdle des fluides.

Cependant, l'intégration du contréle basé
sur |'apprentissage en dynamique des fluides
présente de nombreux défis, notamment en ce
qui concerne la robustesse de la stratégie de con-
trole, I'efficacité de |'échantillon de I'algorithme
d'apprentissage, et la présence de retards de
toute nature dans le systéme.

Ainsi, cette thése vise a étudier et a
développer des stratégies de controle basées
sur |'apprentissage en tenant compte de ces
défis, dans lesquels deux classes principales de
stratégies de controle basées sur les données
sont considérées : |'apprentissage par renforce-
ment (RL) et la commande prédictive basée sur
I'apprentissage (LB-MPC). De multiples contri-

butions sont apportées dans ce contexte.

Tout d'abord, un développement étendu sur
la connexion entre les domaines du controle
stochastique (temps continu) et du processus
de décision de Markov (temps discret) est fourni
pour unifier les deux approches.

Deuxiémement, des preuves empiriques sur
les propriétés de régularisation de |'algorithme
d’apprentissage par renforcement par maximum
d’entropie sont présentées a travers des con-
cepts d'apprentissage statistique pour mieux
comprendre la caractéristique de robustesse de
I'approche par maximum d’entropie.

Troisitmement, la notion d'abstraction tem-
porelle est utilisée pour améliorer I'efficacité de
I'échantillonnage d'un algorithme de commande
prédictive par modéle basé sur |'apprentissage
et piloté par une régle d'échantillonnage de la
théorie de I'information.

Enfin, les modéles différentiels neuronaux
sont introduits a travers le concept d'équations
différentielles neuronales a retard pour mod-
éliser des systémes a temps continu avec des
retards pour des applications en commande pré-
dictive.

Les différentes études sont développées a
I'aide de simulations numériques appliquées a
des systémes minimalistes issus des théories
des systémes dynamiques et du contréle afin
d'illustrer les résultats théoriques. Les expéri-
ences de la derniére partie sont également
menées sur des simulations d'écoulement de
fluides en 2D.
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Abstract:

Environmental needs are driving renewed
research interest in fluid flow control to reduce
energy consumption and emissions in various ap-
plications such as aeronautics and automotive
industries. Flow control strategies can optimise
the system in real time, taking advantage of sen-
sor measurements and physical models. These
strategies aim at manipulating the behaviour of
a system to reach a desired state (e.g., stability,
performance, energy consumption).

Meanwhile, the development of data-driven
control approaches in concurrent areas such as
games and robotics has opened new perspec-
tives for flow control.

However, the integration of learning-based
control in fluid dynamics comes with multi-
ple challenges, including the robustness of the
control strategy, the sample efficiency of the
learning algorithm, and the presence of delays
of any nature in the system.

Thus, this thesis aims to study and develop
learning-based control strategies with respect to
these challenges where two main classes of data-
driven control strategies are considered: Rein-
forcement Learning (RL) and Learning-based
Model Predictive Control (LB-MPC). Multiple
contributions are made in this context.

First, an extended development on the con-
nection between the fields of (continuous-time)
Stochastic Control and (discrete-time) Markov
Decision Process is provided to bridge the gap
between the two approaches.

Second, empirical evidence on the regu-
larisation properties of the Maximum Entropy
Reinforcement Learning algorithm is presented
through statistical learning concepts to further
understand the robustness feature of the Maxi-
mum Entropy approach.

Third, the notion of temporal abstraction
is used to improve the sample efficiency of a
Learning-based Model Predictive Control algo-
rithm driven by an Information Theoretic sam-
pling rule.

Lastly, neural differential models are intro-
duced through the concept of Neural Delay Dif-
ferential Equations to model continuous-time
systems with delays for Model Predictive Con-
trol applications.

The different studies are developed with
numerical simulations applied on minimalistic
systems from Dynamical Systems and Control
theories to illustrate the theoretical results. The
training experiments of the last part are also
conducted on 2D fluid flow simulations.
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Preface

The humility, dedication, and knowledge of my teachers in the various fields
of mathematics, statistics, economics, and computer science together with the
power of the abstract tools emerging from those theories to solve real-world
problems have always fascinated me. This respect and admiration for science
and scientists is a significant motivation for my choice to pursue a PhD. Be-
ing part of the academic society and contributing to the scientific community
is a great honour. Undeniably, there are numerous benefits associated with
pursuing doctoral studies.

The reason for the choice of this thesis topic is not extraordinary. In 2016,
the algorithm AlphaGo (Silver et al. ) achieved a major milestone in artifi-
cial intelligence research by defeating the world champion Go player. Prior to
this, it was widely accepted that superhuman performances in Computer Go
were beyond the capabilities of existing technology. The algorithm employed
a decision-making process based on Deep Learning known as Reinforcement
Learning (RL) which is one of the core theories used in this thesis. This ap-
proach is particularly important regarding the notion of autonomous learning
and what is behind the idea of some agent “playing against itself” to improve.
Thus, | got interested in the idea of contributing in the Learning-based Con-
trol field. The application to the control of fluid flows is particularly interesting
since it opens the door to all the literature on Navier-Stokes equations and tur-
bulence modelling.

Regarding the document structure, several reasons motivated the chapters’
order. The first chapter introduces the challenges relative to Learning-based
Control for Fluid Flows. The following two chapters introduce the mathematical
framework of Stochastic Control from the continuous to discrete time setting.
This allows for a unified view of the control problem that can be studied from
both the discrete or continuous time angles. This set of chapters constitutes
the first part of the thesis.

The second part of the thesis is dedicated to the methodological advances
in Learning-based Control. The two first chapters of this part form two inde-
pendent contributions to the literature that led to two separate publications
in conferences (the 7 International Conference in Optimization and Learn-
ing (OLA24) in Dubrovnik (Hosseinkhan Boucher, Semeraro, and Mathelin )
and the 6th Annual Learning for Dynamics & Control Conference (L4DC24) in Ox-



ford (Hosseinkhan Boucher, Douka, et al. )). The work presented in L4DC
is a collaboration with Stella Douka, during her internship within our research
group. Last, the different work presented in the next two chapters are less ma-
ture. The chapter on Distributional RL aggregates the results obtained during
the first months of this global research project while the chapter on neural dif-
ferential models is an ongoing work on continuous control. The conclusion is
the last chapter and concludes the thesis.

Finally, many people and institutions allowed me to prepare this project
successfully. The next paragraph, written in French, acknowledges the set of
people and institutions that contributed, directly or indirectly, to this accom-
plishment.

Avec I'ensemble des noms cités dans les remerciements ci-dessous, il est
clairement possible de construire un graphe causal qui mene a la réalisation
de ce projet de doctorat.

Tout d'abord, je tiens a remercier les membres du jury, Ana Busi¢, Tristan
Cazenave, Laurent Cordier, Michéle Sebag, et Emmanuel Rachelson, pour avoir
accepté d’'examiner ce travail de thése et pour leurs retours constructifs. En-
suite, je remercie chaleureusement mes encadrants, Lionel Mathelin, Onofrio
Semeraro, et Anne Vilnat, pour leur soutien, leur patience, et leur expertise. Par
ailleurs, je remercie 'ensemble des chercheurs associés a ce projet de these, en
particulier Luc Pastur et Sergio Chibbaro.

Je remercie aussi I'équipe d’'encadrement de mon stage précédent la these,
en particulier Michele Alessandro Bucci et Thibault Faney qui m'ont permis de
m'initier au monde de la recherche académique et d’'obtenir ce poste de doc-
torant.

Du cété des équipes de recherche, je remercie 'ensemble des membres
de I'équipe Dataflot et plus largement le département mécanique-énergétique
du LISN et plus particulierement Caroline Nore, Anne Sergent, Yann Fraigneau
et Didier Lucor. Je remercie également 'ensemble des membres de I'équipe
Inria TAU et plus particulierement Michéle Sebag, Guillaume Charpiat, Sylvain
Chevallier, Cyril Furtlehner, et Francois Landes.

Au sein du laboratoire, je remercie I'équipe SAMI, notamment Laurent Poin-
tal ainsi que I'équipe SPIL et le soutien quotidien de Romain Poirot. Je remercie
aussi Christian pour ses discours quotidiens, dédiés (tous les jours a 16h) a ce
que jintegre OpenAl.

Pour la gestion des calculateurs haute performance, je remercie Rémi La-
croix et Loic Esteve pour I'IDRIS ainsi que Marco Léoni pour le mésocentre de I
Université Paris-Saclay.

Du c6té des équipes pédagogiques avec quij'ai eu 'occasion de travailler, je
remercie Wassila Ouerdane (CentraleSupélec), Cécile Balkanski et Héléne Bon-
neau (Université Paris-Saclay) ainsi que Guillaume Charpiat (CentraleSupélec).
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Sinon, je remercie Charles-Albert Lehalle pour sa considération continue et
ses conseils avisés ainsi que Manfred Opper pour nos échanges constructifs
lors du workshop a Cambridge. Jared Callaham, pour son accompagnement a
l'usage du projet Hydrogym.

Je remercie d'ailleurs tous les chercheurs avec qui jai pu intéragir lors de
ma participations a divers conférences et séminaires, notamment Jonathan Ri-
valan qui a largement égayé mon séjour a Dubrovnik, et Filipo Perotto pour sa
sympathie et son esprit positif.

Pour ce qui est des institutions académiques, je remercie I'Université Paris-
Saclay, I'Université Paris-Dauphine PSL (Jimmy Lamboley, Alexandre Afgous-
tidis, Jean-Paul. Tatiana Blondeel et bien d'autres), CentraleSupélec, I'lnria, et
le CNRS.

Pour les entresprises, je remercie Luxurynsight (Antoine Auer, Jean-Louis
Margoche, Jonathan Siboni), Capital Fund Management (Romain Picon, Gilles
Masselot et bien d'autres), et BNP Paribas Real Estate (Samira Bouadi).

De l'autre c6té, je remercie mes parents pour avoir soutenu ce long par-
cours.

Biensdr, je remercie tous mes co-doctorants qui ont contribué a rendre
cette aventure plus agréable: Alice Lacan, Amine Saibi, Thibault Monsel, Manon
Verbockhaven, Michele Quattromini, Yanis Zatout, Stéphane Février, Lucas Meyer,
Emmanuel Menier, Mathieu Nastorg, Arthur Gesla, Soufiane Mrini, Nilo Schwencke,
Melvin Creff, Nathan Carbonneau, Cyril, Cyriaque Rousselot, Rémi Bousquet,
Romain Egelé, Sabrina Bernard, Gen.

Je remercie aussi mon équipe: Paul Amavi pour l'appui sans faille, Faaf,
Samy, Doris, Yassine Guida, Bosh, L'oiseau, Pinot, Babecity (Oliv, Noé, Masco
(ainsi que Massimo et Armelle), Micka (ainsi que Albert et Karina), Paulo, Be-
ufa, Hédi, Lucas Santiago Stassart (ainsi que Fabienne), Seb, Jibé, Hakim, Amiral
Nelson (maire du g9%me), Hugo, Medy, Benjamin (Richemont) Richmond, Hovo,
Camel, AD, Lio, Maxence, Alli). Mais aussi, Daniel Haik, Josh Kaji, Théo De-
schamps, Hippolyte Le Roy Mayard, Orginto, Florian Bastin, Hadrien Mariaccia,
Abel Nana Kouamen, Arthur Buigues, Marvin Bryant, Régis Lopez Kaufmann,
Antoine Auer (maire du 3°™¢), Luc Baz, coach Tao, Younes, Céline, Majda, Lan,
MX et Mochy, MR, Lou, Jenny, la Cheeky Family, Viviane Armand, Jules Armand,
Romain Hosseinkhan-Boucher. Housni Mkouboi, Alix Mathurin.
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Hosseinkhan-Boucher, Rémy
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1 Introduction

1.1 Motivation

1.1.1 Environmental Needs

In many areas of engineering, environmental needs are driving renewed re-
search interest. A prime example is carbon dioxide emissions, widely consid-
ered to be one of the main causes of global warming (IPCC Core Writing Team,
Lee, and Romero ). This urgency extends to many applications, includ-
ing aeronautics, where it is recognised that optimising aerodynamic flows' can
have a profound impact on reducing pollutant emissions and attenuating noise
(Lumley and Blossey ). With this in mind, the role of flow control emerges
as a crucial area of research, offering potential solutions to reduce energy loss
and emissions.

1.1.2 Flow Control

In principle, flow control strategies (Ashill, Fulker, and Hackett ) can opti-
mise the system in real time, taking advantage of sensor measurements and
physical models. These strategies aim at influencing the behaviour of a system
to reach a desired state (Trélat ). However, these techniques are currently
only used in limited numerical and experimental cases.

1.2 Learning

1.2.1 Machine Learning

Meanwhile, the increasing computational power and storage capacity of mod-
ern computers allow for the development and scaling of data driven methods
that were mostly restrained to theoretical solutions (Schmidhuber ). These
methods belong to the larger concept of Machine Learning (ML) (see the book

"Aerodynamic drag approximately counts for 20% of the total energy loss on modern heavy
duty vehicles (Vernet et al. ).
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Mohri, Rostamizadeh, and Talwalkar , for an introduction). Machine Learn-
ing can crudely be described as the science of developing algorithms that con-
struct correspondences in between objects (mappings) based on data.

1.2.2 Learning-based Control

The combination of this field with decision or control theory gives rise to the
(still broad) sub-concept of Machine Learning Control (MLC) (Sutton and Barto
; Duriez, Brunton, and Noack ; Bensoussan, Y. Li, et al. ; Meyn
).2 In this work, this notion will also be referred to as Learning-based Con-
trol.> Two noteworthy expectations are set by this domain mixing computer
science, statistics, and control.

Approximation Power

First, physical modelling comes with simplifying hypothesis allowing for the
derivation of closed-form, analytical formula. However, these models are often
inaccurate, especially in the presence of uncertainties or non-linearities. The
approximation power of learning based models could overcome those limita-
tions, leading to more accurate solutions.4

Discovering Control Strategies

Second, the discovery of some new control strategies achieving better perfor-
mances can be expected. Such achievement has already been made in con-
current domain of application such as games (Silver et al. ), computational
biology Jumper et al. ), and nuclear fusion (Degrave et al. ).

1.3 Control of Dynamical Systems

1.3.1 Dynamical Systems

As the title of this manuscript suggests, the work presented here deals with the
control of Dynamical Systems (Coudéene ). This broad notion describes any

2The concept of Machine Learning Control is recent (e.g. the english Wikipedia page was cre-
ated in April 2017 while the Reinforcement Learning page was created in 2002). As of today,
no notable book chapter or review unifying the three concepts of Reinforcement Learning (RL),
Learning-based Model Predictive Control (MPC) and Genetic Programming (P. Fleming and Pur-
shouse ) for control has been published. The RL and MPC fields are described in the next
few paragraphs of this introduction.

3Learning-based Control is the core topic of this manuscript. A more classical sub-topic is
Adaptive Control (Astrém and Wittenmark ) that considers iterative learning steps (estima-
tion of a parametric model) to improve the control strategy.

4This is often at the price of interpretability. Thus, solutions combining physical inductive
bias and statistical approximation are now developped (see for instance Karniadakis et al. )-
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system endowed with an evolution law that characterises the system transition
from one step to another. Thus, they encompass a large range of problems.
However, the term dynamical systems should be understood in the sense of
the dynamical system theory (Benoist and Paulin ; Viterbo ; Leroux

) which was originally inspired by the description of dynamics related to
Physics and Mechanics. The controlled systems considered in this work go from
simple theoretical models to Fluid Dynamics problems.

1.3.2 Two Approaches to Learning-Based Control

This work distinguishes two related approaches to Learning-Based Control: Re-
inforcement Learning and Learning Based Model Predictive Control.

Reinforcement Learning

Reinforcement Learning (RL) (Sutton and Barto ; Bertsekas and Tsitsiklis

; A. Agarwal, Jiang, and Kakade ) constructs data-driven control strate-
gies based on a so-called reinforcement signal collected through the interaction
with the environment (dynamical system).> This signal is a scalar value that
quantifies the quality of the control input fed to the system. It can be seen as
an instantaneous reward or a cost, depending on the problem.

Learning Based Model Predictive Control

Learning Based Model Predictive Control (MPC) (Aswani et al. ; Chua et al.
; Koller et al. ; Hewing et al. ) is @ more classical approach. Basi-
cally, it combines a model learnt from dynamics data® with a planning algorithm.
Planning can be defined as the process of selecting an optimal sequence of
control inputs based on the model forward prediction and its associated rein-
forcement signal.” 8
Several problems arise when considering the control of dynamical systems
with Learning-Based Control. The next section presents the problems and re-
search objectives of this PhD.

5Thus, approaches like reward free RL (Touati and Ollivier ) are here excluded from the
RL definition.

®A maijor field of research in this domain is the identification of dynamical systems, termed
System Identification (Ljung )-

7Thus, LB-MPC making use of a reinforcement signal is a form of Reinforcement Learning.
However, the distinction is made here to underline the model learning and planning aspects
of the algorithm.

8In the context of General Artificial Intelligence, the model-based approach corresponds to
the concept of World Models (Ha and Schmidhuber ) and the planning aspect is referred to
as Imagination (Z. Lin et al. ).
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1.4 Problems and Research Objectives

1.4.1 Challenges in Learning-Based Control

Applications of Learning-Based control for Flow Control exhibit important chal-
lenges (Viquerat et al. ), such as:

« Sample efficiency: Flow control experiments are expensive and time con-
suming. Moreover, Learning-Based Control algorithms, such as Deep Re-
inforcement Learning (DRL), require a large amount of data (Plaat ).

* Robustness: Fluid dynamics are often non-stationary, chaotic, noisy or sen-
sitive to parameters. The control strategy learnt must be robust to these
perturbations.

* Partial observability: Sensors are noisy and limited. The control strategy
should handle this partial information to achieve desired performances.

* Delays: As the environments are partially observable (PO), the feedback
signals may be delayed (post-control delay). In real-world applications,
the control inference is not instantaneous (pre-control delay). The control
strategy should handle these delays.

References to these issues are made throughout the document. The work
presented in this manuscript aims at addressing some of these issues through
a series of research projects.

1.4.2 Research Objectives

Therefore, the research objective of this PhD is to extend knowledge on these
open-questions while contributing beyond the field of flow control. Each of the
research projects presented in this manuscript addresses one of the challenges
mentioned above with more or less emphasis.

As the introduction so far suggests, the work presented in this manuscript
is multidisciplinary. Thus, a broad range of concepts and tools are used, bor-
rowed from the fields of control theory, machine learning, statistics, and fluid
dynamics.

1.5 Structure of the Document

The manuscript is organised as follows. This introduction is the first chapter
of the document. Then, the document is divided into two main parts: the first
part presents the theoretical foundations and unifying perspectives in Learning-
Based Control. The second part presents the research projects conducted dur-
ing the PhD. The content of each chapter is now briefly presented.
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1.5.1 Theoretical Foundations and Unifying Perspectives

From Stochastic Control to Markov Decision Processes

The second chapter introduces the continuous time stochastic control concepts
from which all the other notions discussed in the document (e.g. Markov De-
cision Processes (MDP), Bellman equation) can be inherited. It connects the
continuous time control point of view to the discrete time framework, which
is more common in the Learning-based control literature. In particular, the
chapter introduces the notion of system sampling that allows for linking both
continuous and discrete time worlds. The existence of this connection is use-
ful in various applications and is a core tool used in Chapter 5. The end of this
chapter deals with the numerical approximation of the continuous time control
problem. The reading of this chapter is recommended before going through
the part devoted to continuous time control (Chapter 7).

Learning-based Control with Discrete Decision
Processes

The third chapter of this document presents the discrete time decision frame-
work that is widespread in Learning-based control literature. Elements of learn-
ing theory are then presented in which key concepts such as learning task (loss)
or generalisation error are introduced. The chapter ends with a description of
Learning-based control and a presentation of the concrete dynamical systems
used in the numerical experiments performed in this document. The reader
only interested in the discrete time approach may solely start reading this doc-
ument from Chapter 3 and ignore Chapter 7.

1.5.2 Methodological Advances in Learning Based Control

Evidence on the Regularisation Properties of Maximum Entropy Reinforce-
ment Learning

This fourth chapter is the first of the second part. It deals with the robustness
challenge of RL presenting empirical evidence on the robustness of Maximum
Entropy Reinforcement Learning. It introduces the notion of complexity mea-
sure which is borrowed from statistical learning theory. Then, measures of
robustness are introduced and the chapter ends with a presentation of the
empirical results obtained. This work led to the publication of a paper on the
proceedings of the 7™ International Conference in Optimization and Learning
(OLA24) in Dubrovnik (Hosseinkhan Boucher, Semeraro, and Mathelin ).
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Increasing Information for Model Predictive Control
with Semi-Markov Decision Processes

Chapter 5 discusses the sample complexity approach in LB-MPC with the in-
troduction of semi-Markov decision processes to extend a sample acquisition
strategy that accelerates model learning. The chapter presents the information
theoretic notion of expected information gain in the context of Gaussian pro-
cess based model predictive control. Then, an extension of the approach to
the semi-Markov decision process framework is presented to increase the in-
formation acquisition speed. Results on the sample efficiency of the approach
are presented. This work led to a conference paper published in the proceed-
ings of the 6th Annual Learning for Dynamics & Control Conference (L4DC24)
(Hosseinkhan Boucher, Douka, et al. ).

Distributional Reinforcement Learning is Sample Efficient

Chapter 6 presents empirical evidence on the sample efficiency of Distribu-
tional RL. The chapter discusses the statistical approach to learn (estimate) dis-
tributions by introducing basic concepts of optimal transport theory and quan-
tile regression. Next, the distributional perspective in RL is introduced and a
state-of-the-art algorithm available in the literature is presented. The chapter
ends with empirical results on the sample efficiency of the approach.

Neural Controlled Delay Differential Equations for
Model Based Control

Chapter 7 presents a recent approach to model delayed dynamical systems
with continuous-time neural delayed differential models. Continuous-time Re-
inforcement Learning is first presented, then two use cases of using delayed
neural models for control are presented: delayed dynamical systems identifi-
cation and partial observability handling. Finally, the neural model is presented
and the chapter ends with empirical results on learning delayed or partially ob-
servable dynamical systems.

The last chapter concludes the document by summarising the contributions
of the work presented and discusses future research directions.
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2 From Stochastic Control to Mar-
kov Decision Processes

The first part of this thesis begins with the present chapter, which introduces
the theoretical foundations and a unifying perspective on control.

2.1 Introduction

This chapter introduces the field of stochastic control with the aim of outlin-
ing its connection with the learning-based control standard formalism. Mod-
ern frameworks for learning methods in control, such as Markov Decision Pro-
cesses (MDP), have roots in the mathematical field of Control Theory. As it will
be discussed in the next section, this relationship does not seem to be well-
known in the Machine Learning (ML) community but tends to be increasingly
considered in the literature.

2.1.1 Connecting Stochastic Control and Reinforcement
Learning

Recently, the paper “A Tour of Reinforcement Learning: The View from Con-
tinuous Control” (Recht ) discussed the proximity between deterministic
control theory and Reinforcement Learning, an interdisciplinary area of ma-
chine learning and optimal control. Two years later, a paper published in the
Journal of Machine Learning Research (H. Wang, Zariphopoulou, and X. Y. Zhou

), entitled “Continuous Stochastic Control with Deep Reinforcement Learn-
ing”, uses the connection between the Stochastic Control theory and MDP to
propose an analysis of the maximum entropy principle in the context of Rein-
forcement Learning. Indeed, the central concept of exploration (closely tied to
the policy entropy) is much more natural in a stochastic setting.

This chapter elaborates and extends the presentation given by H. Wang, Za-
riphopoulou, and X. Y. Zhou by showing how the standard Partially Observ-
able Markov Decision Process (PO-MDP) formulation is obtained from Partially
Observable Stochastic Differential Equations. This contribution could soften
the gap between the two fields and provide a more solid theoretical foundation
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for the learning-based control literature. Notably, carefully chosen references
are provided to the reader for each step of the development. It is likely that the
frontier between continuous and discrete time learning-based methods will be-

come less marked in the future (see Croissant for a recent thesis at the
intersection of the two fields and Leahy et al. for a recent work in this
framework).

2.1.2 A General Framework for Diverse Applications

The choice of starting the presentation from a general, continuous-time point
of view (Section 2.2) allows encompassing all the different concepts treated in
this thesis. Hence, all cases presented in the subsequent chapters are particu-
lar cases of the framework introduced here.

Moreover, the generality of the presentation is broadened by the presence
of a lag or delay affecting the system evolution. This is also motivated by the
desire to unify the framework for the whole document. The question of delay
will be addressed particularly in Chapter 7.

In addition, the question of sampling analogous (continuous-time) signals is
also discussed at the end of the chapter (Section 2.3) since it can be related to
the notion of Semi-Markov Decision Process (Sutton, Precup, and Singh )
that is treated in the work presented in Chapter 5.

The end of the chapter (Section 2.4) deals with the question of simulation
and numerical approximation. The classical approximation scheme presented
there bridges the gap between the continuous-time and discrete-time decision
processes.

2.1.3 A Note on the Mathematical Development

Itis important for the reader to be aware that this chapter does not attempt to
provide a mathematically rigorous treatment of the highly abstract problem of
Partially Observable Stochastic Control. An important list of heavy mathemat-
ical concepts proper to stochastic differentiability and infinite dimensionality
are hidden from the reader but present in the mathematical references. Oth-
erwise, the development would be very heavy and substantial work would be
required to merge multiple concepts (e.g. the partial observability and the pres-
ence of delays). The reader is referred to W. Fleming and Rishel ; @ksendal
for an introduction to the field of stochastic control.

The next section introduces the main concepts of stochastic control, in a

general manner, before focusing on the specific cases.

2.2 Concepts of Stochastic Control
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2.2.1 The notion of control

Many dynamical systems that can be observed or measured are subject to im-
perfectly known disturbances, possibly random. This randomness can be due
to the environment, the system itself, or the measurement process. The term
nature is often used to qualify the origin of the exogenous perturbations that af-
fect the system. Alternatively, the system can be controlled by an endogenous®
input called control.

Controlling a Dynamical System

Generally, the control U applied to the dynamics is carried out by some agent
or controller. An important question concerning the design of control systems
is the information available to the controller at each unit of time.

W. Fleming and Rishel mentions three main situations:

* The information available to the agent is determined a priori, before the
beginning of the control procedure. Then, the control only depends on
time, while the amount of available information is constant over time and
equals the initial information. It is called “open loop” control.

* The system state X, or history H; is available to the controller at time
t. Thus, the amount of available information then depends on time. For
instance, when the history is available to the decision maker, the infor-
mation increases™. This setting is termed as “closed-loop” or feedback
control in the case of complete observability.

* Only a partial representation Y; of the state is available. The quantity Y;
is often a set of system measurements that are called observables. Math-
ematically, the observables are a function of the state™. In this case, the

9The terms “exogenous” and “endogenous” are borrowed from economics (Blanchard and
Johnson ; Acemoglu ).

'°In probability theory, this idea is formalised with the concept of filtration (Jean-Francois Le
Gall ) which is an increasing sequence of o-algebras. A o-algebra is a collection of events
(subsets of the outcome space (). The richer the o-algebra, the more information is available
(there are more events). A g-algebra can be generated by a random variable, in which case
it represents all the possible events that can be discerned from the values described by this
random variable. Notably, the o-algebra generated by a constant random variable (poorly in-
formative) is the certain event Q and the impossible event () (almost no information on the
random experiment is conveyed by the constant random variable in the resulting o-algebra).

"In practice, the function is injective since they often represent lower dimensional measure-

ments which can have the same exact value, given two different underlying states.
The o-algebra generated by a function of arandom variable is always contained in the o-algebra
of this random variable. Consequently, the information is whether kept or lost but never cre-
ated from transforming or extracting data. The two ¢-algebras are the same if the function is
bijective.
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available information is always lower than when the full state is observ-
able. This setting is termed as “closed-loop” or feedback control in the
setting of partial observability.

In the next section, the problem of control in infinite dimension is described
and how it can be framed as a Partially Observable Markov Decision Process.

Preliminary References on Stochastic Control

The readeris referred to Trélat for amore rigorous treatment of control of
differential equations, El Karoui, Du Huu, and Jeanblanc-Picqué ; H. Wang,
Zariphopoulou, and X. Y. Zhou to find details on continuous stochastic
control and to Pan et al. ; Bucci et al. for recent applications with Re-
inforcement Learning. Note the very challenging notions of existence, unique-
ness, controllability and observability of the solutions are omitted here.

The development of this chapter is inspired by multiple references in the
field of Stochastic Differential Equations and Stochastic Control. In particular,
this tutorial borrows concepts from Relaxed Stochastic Control for fully observ-
able systems (W. H. Fleming and Nisio ; El Karoui, Du Huu, and Jeanblanc-
Picqué ; Redjil and Choutri ) and Partially Observable Stochastic Con-
trol (N. Ahmed ; N. U. Ahmed and Xiang ). SDE in infinite dimension is
treated in Gatarek and Goldys ; Gawarecki and Mandrekar . An article
on control of infinite-dimensional SDE is Bensoussan and Viot . The topic of
delayed SDE is treated in Kichler and Mensch ; S. Mohammed ) S.-E A
Mohammed ; Buckwar and the control of delayed SDE in Elsanosi,
@ksendal, and Sulem . Other references for the notions introduced below
are directly introduced in the text.

2.2.2 General Continuous-time Formulation

A general formulation of the state and observation dynamics covering most of
the recent challenges in learning-based dynamical systems modelling is intro-
duced now.

General Continuous-time Stochastic Dynamics

Let X = (X;),., denote the state process, subject to the control process U =
(Up),e; and Y = (Y}),., the observation process defined on I ¢ R, = R, U
{+o0}. Thus, I = [to, T] for some initial time ¢, € R, and final time T" € R, U
{+o0}.

Those objects are stochastic processes that are defined on a probability
space (2, .#,P). The state and control processes evolve in some Banach spaces
X and U while the observation process evolves in a finite dimensional Euclidean
space Y C R¥ with dy € N,.
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Now, a central object of this presentation is presented that encompasses
a very broad class of dynamical systems from physics to finance. The general
dynamics studied here are continuous-time stochastic process.

Definition 2.2.1 (General Dynamics - Differential). The state process X is the
solution of the stochastic differential equation (SDE)

(2.1)

to—7xto] PX[tO*TX,tO]

{ dXt = f (Xt7 thnm Ut) dt + EX(XM Ut) thl
X

where f : X x X xU — X is the dynamics operator, ex : X xU — X is the state
noise operator, W' is a standard Brownian motion and Tx € R is the state delay
suchthatt —x € I forallt € I.

The initial condition is given by the distribution P Xig o] The dynamics defined
by (2.1) being a delay-differential equation, the initial value Xy, . 1.1 is not a point
in a vector space but a history process over the interval [ty — Tx,to]. The dynamics
operator f acts between Banach spaces.

The state noise operator, also known as diffusion coefficient, ex is a function of
the state and the control process which scales the Brownian motion W',
The observation process Y is driven by the SDE™

Y, ~ (2.2)

{dYt =g9(Xy, Xy ry, Up) dt + ey (X4, Uy) thQ
90(Xto)

where the observation operator g : X x X x U — Y is a function acting from the
state, delayed-state and control spaces to the observation space, the observation
noise operator ey : X x U — Y is a function of the state and control processes
which scales the Brownian motion W2, The observation delay 7 € R, is such that
t— 1y € I forallt € I. The initial observation is obtained from the state through
the mapping go : X — Y. The distributions of X1, +,,, W* and W? are supposed
to be independent.

The set of all control processes such that (2.1) and (2.2) are well-posed is denoted
<, (admissible control space).

The dynamics (2.1) and (2.2) are presented in differential form but can also
be written in integral form.

Definition 2.2.2 (General Dynamics - Integral). Definition 2.2.1 can be rewritten
in integral form as

t t
Xt == Xto + / f (Xsa Xszxa Us) dS + / 6X()(& Us) dWsl (23)
to

to

2The dynamics of the observation process is inspired by W. H. Fleming and Nisio . The
delayed formulation is treated, for instance, in Buckwar
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for the state process and

t

t
Yi = g0 (Xs,) + / 0 (Xo, Xy ry U,) ds + / e (X, U) dW? (2.4)

to to

for the observation dynamics.

The right-most integrals involving Brownian motions are stochastic integrals. It can
be interpreted as time-correlation between the diffusion coefficients ex or ey and
the Brownian motion variations dW, or dW}?, respectively. Remark 2.2.2 gives more
details about the interpretation of the stochastic integral.

A series of remarks are necessary to disentangle the framework presented
here.

Remark 2.2.1 (Motivation). The possibility to consider the system state X, as a
(possibly random) function (e.g. X;(z), z € R3) which may be a solution of a par-
tial differential equation (PDE), is the reason for using general infinite-dimensional
spaces in this presentation. This choice is not common in the learning-based control
literature, see Pan et al. ; Bucci et al. , Peitz, Stenner, et al. for a work
on this topic in Reinforcement Learning.

Now, the meaning of the stochastic integral terms in the dynamics is ex-
plained.

Remark 2.2.2 (Interpretation of the stochastic integral). For simplicity, it is sup-
posed that X = R such that the Brownian motion W : I x {2 — R takes values in
the real line.

For every sequence t, = t}, <ty < ... <ty =t of partitions of the interval
[to, t] C I such that max}_, o, —0asn — oo, where O, = it —tr |,

kn—1 t
lim Y ex(Xyg Uy )(Wig — Wy ) = / ex(X,. U)WV, (2.5)
N0 ' ' B ' to

in probability.
Let the discrete-time increments of the Brownian motion be W = W;» -
1 i+
Win . By definition of the Brownian motion,

5Wt§§z - Wtzz+_1 Wt}:z ~ N(O7 62%) (26)

and informally, 6W» — dW; when n — oo. Consequently, the stochastic integra-
tion can be seen as standard integration with randomly distributed infinitesimal

'3See for instance, Jean-Francois Le Gall for a definition of convergence in probability. In
common terms, it means that for any treshold, the probability that the absolute error, between
the sequence and its limit, is above the treshold goes to zero.
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time increments. Moreover, since the partial sum of Eq. (2.5) approximates the
stochastic integral, if the scaling parameter is constant e.g. ex = 1

kn—1

t
> Wiy / dw, =W, (2.7)
1=0

to

where the last equality can be obtained by noting that the partial sum is telescopic.

The above approximation gathers some key properties.
First, the integral approximates the sum of Gaussian random variables whose scale
(variance) is the time increment. Second, at time t, the Brownian motion W, is equal
to the sum of those random increments. Third, by definition of the Brownian mo-
tion, the increments are independent and normally distributed: this motion can be
interpreted as the limit of a discrete random walk with normally distributed incre-
ments.

More information about this approximation can be found in Jean-Francois Le
Gall , Proposition 5.9 for a multidimensional Brownian motion.

The stochastic integral can be defined with respect to other stochastic processes
than the Brownian motion, see Remark 2.2.6. The careful reader may notice the
similitude between the stochastic integral and the Riemann-Stieltjes integral.

The following case is enlightening despite being not considered in the appli-
cations in the work presented here.

Remark 2.2.3 (Functional Brownian motion). Consider the case where X is an
infinite-dimensional function space. Then a Brownian motion on X defines a trajec-
tory in a functional space. It can be thought as a continuous sequence of random
spatial functions.

For some outcome w € §) of the random experiment, the value of the Brownian
motion Wy (w) attimet, is a function of the space (i.e. W;(w)(z) where z is the spatial
coordinate).

In this general case (Guiseppe Da Prato and Zabczyk 1992), the increments of the
Brownian motion define a Gaussian process.

5Wt£¢ = thi:l W% ~ GP(0, 52% Lo—) (2.8)

where the covariance operator (z, z') — 6;. 1._. generalises the finite dimensional

scaled identity matrix 6, 14.. Hence, when the state X, is a function, the dynamics
are perturbed by a strong (spatial) Gaussian white noise™.

Some important cases that are commonly encountered in the literature are
now presented.

“Here, a strong Gaussian white noise is a stochastic process such that all coordinates are
independant gaussian.
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Particular Cases

A very standard setting is when the dynamics are Markovian.

Remark 2.2.4 (Markovian Dynamics). The state and the observation, dynamics
(2.1)-(2.2) are said to be Markovian if their respective operators f and g, only de-
pend on the current state X,, and the control process U, where the control process
depends only on the instantaneous state X,. In this case, the state process X, re-
spectively the observation process Y;, is a Markov process.

If the dynamics are deterministic, to be Markovian means that time-derivative
of the state process is a function of the instantaneous state and control only.

A Markov process that is a solution of a stochastic differential equation is called
a diffusion process.

The initial condition can be fixed to a deterministic value.

Remark 2.2.5 (Fixed Initial Condition). Let (2)icjry—ry o] € X0 be an ar-
bitrary initial history function. It is possible to fix the initial condition Xy, 1) =
Tltg—rx o] DY SELtING IP’X[trTX’tO] = (5{%_%%]} where 5{x[t0_fx’to]} is the Dirac mea-
sure at {Ty,—- 1]} This way, the initial condition is deterministic (degenerated)
and Xy, —ry to] = Tto—rx ,to] With probability one." In the Markovian case, for x € X,

]PXzO = 5{:5}-

A Gaussian noise is a common choice for the state noise, but other distur-
bance distributions can be considered.

Remark 2.2.6 (General Noise). The brownian motion is analogous to Gaussian

noise in the discrete-time setting. A larger class of continuous-time noise processes

can be considered, e.g. see S.-E. A. Mohammed considers a particular type

of process called semi-martingale noise (Jean-Francois Le Gall , Revuz and Yor
), but this notion is way beyond the scope of this work.

Remark 2.2.7. The challenges in Learning-based Control introduced in Section 1.4.1
are addressed by the general framework presented here.

* The robustness aspect will be covered by the stochastic nature of the dynamics
characterised by the Brownian motions W' and W2 in Eq. (2.1) and (2.2).

* The partial observability is addressed by the observation process Y (Eq. (2.2)).

* The delayed state X,_,, and observation dynamics X,_,, should provide a
wide panel of interesting configurations that feature the challenges of control-
ling systems with lagged information.

'5In probability theory, an event that occurs with probability one is said to happen almost
surely (a.s.)
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Observability

Observability is now regarded more rigorously. Throughout the document, the
notion of observability will refer to the following definition

Definition 2.2.3 (Terminology on Observability). If Y = X and gy = Id, then the
system is said to be fully observable. Otherwise, the system is partially observable.

Examples of Dynamics

A few examples are now given to illustrate the general framework presented
above.

Example 2.2.1 (Deterministic Dynamics and PDE). Consider the subclass of de-
terministic stochastic processes (x;);cy, i.e. (Xi(w))ier = (z¢)ier for any w € Q.
Suppose that X = L?(R%) with d, € N*, ex = 0 and ¢y = 0. Then, the state
dynamics given by (2.1) becomes

Oy (2) = f (4 (2) s Ttry (2),u (2))
{x[to—Tx,tO] (2) =€ (%) (2.9)
and
Orye (2) = 9 (20 (2) , 2iry (2) 14 (2)
{ Yto (2) = go (21, (2)) (2.10)

where ¢ : [ty — Tx,to] — L?(R%) is an initial history function. In particular, any de-
layed and controlled partially observable PDE can be represented when f is chosen
as a partial derivative operator.

The well-posedness and existence of the solution of (2.9)-(2.10) is a challenging
problem in the theory of PDEs, but it will not be addressed here. To go further, the

reader may be interested in the books of Cartan , Evans s Zuily about
PDEs and Lions ; Bensoussan ; Bardi and Capuzzo-Dolcetta ; Trélat
for controlled PDEs.

Example 2.2.2 (Delayed Differential Equation). Consider the subclass of deter-
ministic stochastic processes (x;)icy, i.e. (Xi(w))ier = (x1)ier for any w € Q.
Suppose that X = R with dx € N*, ex = 0 and ey = 0. Then, the state dynamics
given by (2.1) becomes

(2.11)
',E[tofTX ,to} = 5

{ Oy = f (13t7 Tt—rx) Ut)

and

{&yt =g (J?t, Tt—7y, ut) (2.12)

Yto = 90 (9€to)
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where £ : [ty — Tx,to] — R js the initial condition.

In particular, any controlled partially observable Delayed Differential Equation
(DDE) can be represented. An ordinary differential equation (ODE) is a particular
case of DDE when the delay term is ignored.

In the control-free setting, the existence and uniqueness of the solution of (2.11)-
(2.12) is guaranteed when the dynamics operator f is continuous and Lipschitz. The
interested reader can find an important development of the DDE theory in the ref-
erence manuscripts of Kuang , Smith and Hale

Example 2.2.3 (Stochastic Navier-Stokes). Some fundamental dynamics in fluid
dynamics are given by the Navier-Stokes equation. Let X = L?(I x R?;R?). In the
stochastic setting, it reads

dXi(z1,29) = VNS(AXt(zl, 29) — (X¢(21, 22), V) X¢(21, 22) — Vpe(21, 22)) dt+dWy(z1, 22)
(2.13)
where V is the gradient operator (9.,, 0.,), A is the Laplace operator 97, +02,, and
(X, V) stands for the differential operator 9., X} + 0.,X?, with X, = (X}, X?)
the velocity field and p; the pressure field at time t. The term v € R is the
kinematic velocity."® Boundary or limit conditions can be added to Eq. 2.13, but they
are omitted here for simplicity.
For a rigorous treatment of this example, the reader may check Bensoussan and
Temam JE ; Giuseppe Da Prato and Debussche , Kuksin and Shirikyan

s Fabbri, Gozzi, and Swiech

The question of control is now addressed by defining the associated prob-
lems the decision-maker is confronted with.

2.2.3 Control Objective

The definitions in this part extend the classical control theory presented by
Trélat ; Trélat to the stochastic setting.

Control Problem

Suppose that I = [ty, T]. Given a region of the state space Ex C X, the control
or controllability problem is to find a control process U such that the controlled
process (2.1) satisfies

Xitg—rxto) =& and Xp € By (2.14)

almost surely (i.e. with probability one) where ¢ ~ PX[tO_TX o is the initial ran-

dom condition on the history (a stochastic process on [ty — Tx, to])-

®The superscript NS stands for Navier-Stokes.
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Optimal Control Problem

The optimal control problem is a control problem as defined above, but with
the constraint that the control process U minimises a cost function.

Let define the random total cost as the accumulated cost over the time in-
terval [¢,T]

T
Z (t,PX[HX’t],U> - / e Ve (X, Uy) ds (2.15)
t

foranyt € I with y € [0, +oco[ a discount factor and ¢ : X x U — R an instanta-
neous cost function. This quantity is a random variable. Its value depends on
the random initial condition, noise, and random control process. The random
initial cost from initial time ¢, is denoted Z(PX[HX,t JU) = Z(tO’PX[t(ﬂx,to]’ U)

The typical scalar-valued objective functional of the following form is con-
sidered

T
J (t,IPX . ,U> ) U e_W(S_tO)c(XS,US)ds} ) [Z (t,PX . Uﬂ
[t—7x 1] . [t—7x 1]
(2.16)
This quantity is a real number which averages the random total cost. If ¢t = ¢,
the objective functional J (o, IP’X[tOfoytO], U) is denoted J(Px[toqu
The optimal objective functional is then defined as

to]’ U)

I (tPx, ) = inf J(6Px,_ . U) (217)

U E,(?fz/{

for any ¢t € I. The control process that minimises the cost is denoted U* € 7.
Hence, the optimal control problem solves

T
J* (IPX . ) —J (tO,PX . ) — inf E { / e~V (X, UL) ds]
[to—7x t0] [to—Tx to] Ucath, to
(2.18)
In the case the initial condition is fixed (see Remark 2.2.5), the optimal objective
functional is given by

T
J* (x[tO_TX7tO]) = lnf E |:/ G—W(S—tO)C(XS7 Us) dS | X[tg—Tx,t()] = I[t()—Tx,to]:|

Uy to
(2.19)
Similarly, for the Markovian case, the optimal objective functional is given by
T
J* (z,) = inf E { / e e (X, Uy ds | Xy, = xto] (2.20)
Ucaty to

Note that the problem of the existence of an optimal partially observable con-
trol has no solution in a general way. The following remarks are intended to
provide further insight into the optimal control problem.
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Remark 2.2.8. The control problem (stricto-sensu) can also be defined when T' =
~+o0. In this case, the terminal condition at time T is replaced by the condition that
the state remains in Ex forever when t is sufficiently large. Moreover, the condition
~v < 0 is necessary to ensure the convergence of the integral.

Remark 2.2.9. Note that if Ex = X, then the control problem is trivial, i.e. for any
control process U, Xt € X.

In that specific case, the optimal control problem reduces to the minimisation
of the cost function (2.18).

Remark 2.2.10. Traditionally, the objective functional in finite time adds a “termi-
nal cost” (Trélat ) term which is omitted here for simplicity. The terminal cost
is a function of the final state Xr. This kind of cost is well-suited for task or goal-
oriented problems.

Remark 2.2.11. If v = log(¥) with 5 € |0, 1], then

T
J*(t,U) = U1££UE {/t i (Xs, Us) ds] (2.21)

which is a formulation that is often employed in the discrete case.

Remark 2.2.12 (Constrained minimisation). The optimal control problem can be
seen as a constrained minimisation problem where the quantity to optimise is the
objective functional (2.18) and the constraints are the dynamics (2.1)-(2.2) with initial
and terminal conditions specified by (2.14).

Thus, it makes sense to consider calculus of variations (Bourguignon ) and
constrained optimisation theory in infinite-dimensional spaces (since the control
space is infinite-dimensional (Peypouquet )) to solve the optimal control prob-
lem in specific cases.

An important type of cost function that is used in all the work in this thesis
is now presented.

Example 2.2.4 (Quadratic Cost). The quadratic cost function is a common choice
in control theory. Given two definite positive operators Ay and Ay, it is defined as

2 2
c(@,u) = ||z 4, + lullzz 4, (2.22)

where ||z . , = (x, Az) . for any positive definite operator A and any vector x
in the corresponding L* space. The quadratic cost is used in the Linear Quadratic
Regulator (LQR) problem Trélat

Closed-Loop Control

Now the feedback control is formally defined.
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Definition 2.2.4 (History-dependent control). The process (U,);c; is said to be
a history-dependent control if for any t € I, it is a function of the past trajec-
tory" ((Yy)i,<s<t, (Us)i,<s<t) Of the observation-control process.

Formally'®, for any t € I, there exists a function u, : Yt x Yltotl — 1/ such that

Up=w (<Ys>t0§s§t g (Us)t0§s<t) (2.23)

Definition 2.2.5 (Feedback control). A feedback control process (U, ),y is a history
dependent control process where the feedback loop function wu is solely a function
of the instantaneous observation Y.

Formally, for any t € I, there exists a function u; : Y — U such that

Up = uz (Y7) (2.24)
This kind of control is sometimes called Markovian control.

Remark 2.2.13. In the field of automation, a history-dependent control is often
labelled closed-loop control while a control that is independent of the past ob-
servations and decisions is called open-loop control (W. Fleming and Rishel ;
Astrém and Murray 2021).

2.2.4 Policy

So far, a stochastic process U = (U;):c; has been considered to control the sys-
tem. Consider an outcome w € (2 of a control experiment where, for instance,
the random system evolution is observed or simulated.

The resulting controlled trajectory X (w) = (X;(w));c; depends on the fixed con-
trol trajectory U(w) = (U;(w))ter. This means that once a control process U is
chosen, if a controlled trajectory (X;(w)):cs is observed as the outcome of a ran-
dom experiment, then its associated control trajectory (U;(w))c; is fixed and
always the same.

An example may help to grasp this concept of stochasticity'. Suppose the
outcome space 2 = {10°,30°} gives the initial temperature in a room and
U(w) = turn on the air conditioning at 20°C for w = 30° and turn on the heat-
ing at 20°C for w = 10°.

Let X;(w) be the temperature in the room at time ¢. Then, for each scenario

7In probabilistic terms, this is equivalent to say the control is measurable w.r.t. the o-algebra
generated by the past observation-control process (the measurability condition is equivalent
to the existence of u). Thus, the information available at time ¢ to the controller is governed by
the past trajectory.

®Mathematically, the question of the existence of such control is not trivial at all, especially
in the stochastic setting where the history dependence, and by extension the concept of infor-
mation availability, is defined in terms of measurability with respect to filtration generated by
the process (El Karoui, Nguyen, and Jeanblanc-Picqué ).

9This example can be written much more formally without too much difficulty.
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(initial room temperature) w = 10° and w = 30°, the action performed is always
the same (turning up or down at a prescribed level of temperature)?°.
This way, the impact of any other decision variant would be unknown. For
instance, what would happen to the temperature X,(w) if the air conditioning
was turned at 40°C instead of 20°C?
Thus, the resulting information about the environment is rather limited. Choos-
ing a U that covers a larger, possibly randomised spectrum of decisions would
help to extract more knowledge on the experiment and the system dynamics
X. ldeally, for a given scenario (fixed by the outcome w), a range of control
processes is considered.

This basic example leads to the broader concept of exploration.

Indeed, given this fixed state trajectory X (w), one can be interested in the
behaviour of the system under different control trajectories than U(w). This no-
tion is of extreme importance in the modern learning-based control field
and is called exploration (Ladosz et al. ). The exploration is a vast topicin
learning-based control and notably in Reinforcement Learning. Chapter 5 will
address this topic using a tool from Information Theory to increase the infor-
mation extracted from the system.

From this perspective, the idea is to enlarge the control space ¢ and con-
sider that the control process U takes values in a space II of probability mea-
sures on U also known as generalised control space. This leads to the concept
of policy.

Definition 2.2.6 (Policy). Let I1 be the space of probability measures on U. A policy
7, or policy process is a Il-valued stochastic process, i.e. a process m = (), Such
that foranyt € I, m € 1L

Definition 2.2.7 (Stationary Policy). A policy is said to be stationary if there exists
a probability measure 7 € 11 such that foranyt € I, m; = 7 € IL

In this case, the policy is a fixed probability measure on U (by identification) and is
denoted w by abuse of notation.

Remark 2.2.14 (Degenerated Policy). Let U = (Uy),,; be a control process. Sup-
pose that ™ = (5{Ut})tef where 6,y is the Dirac measure at {U,}. Then, the policy
w is termed degenerated and is analogous to the control process U.

Indeed, sampling from = deterministically returns U.

Once the policy concept is introduced, the control problem can be reformu-
lated to incorporate the uncertainty in the control process. Originally, this has
been coined as Relaxed Stochastic Control (El Karoui, Du Huu, and Jeanblanc-
Picqué ).

2°The degenerate case, where 2 contains only one outcome (scenario) implies that the dy-
namics are deterministic and the control is a function of the time.

34



2.2.5 Relaxed control

The relaxed or exploratory version of the dynamics (H. Wang, Zariphopoulou,
and X. Y. Zhou ) is given by the following equation.

Definition 2.2.8 (Relaxed Dynamics - Differential). Considering the context of
Definition 2.2.1, and some arbitrary policy = = (m,),., the relaxed dynamics are
given for the state process by

dX; = [ (X4, Xp—ry, 7)) dt + ex (X, mp) AW} (2.25)
and for the observation process by
dY; = g (Xp, Xo—ry, ) dt + ey (X, 7)) dW} (2.26)
where
f (X, Xiry, M) = /uf (X, Xiory s w) m(du) (2.27)

while the observation operator g, the noise terms ex and ey are defined similarly.
The set of all policies such that the relaxed dynamics (2.25)-(2.26) is well-defined is
denoted ;.

The notion of policy generalises the stochastic optimal control problem pre-
sented before. The next remark highlights this point.

Remark 2.2.15. The remark 2.2.14 shows that the control process is a particular
case of policy. In other words, the set of control processes is a subset of the set of
policies.

5271,1 C 9 (2.28)

This is a standard observation in the stochastic control literature. It allows math-
ematicians to obtain optimality results more easily by reformulating (relaxing) the
optimisation problem.*'

A corresponding relaxed optimal control problem can be defined exactly as
the classical optimal control problem.

Relaxed Optimal Control Problem

The relaxed optimal control problem is the relaxed dynamics counterpart of the
optimal control problem where the policy plays the role of the control process.

Let the random total cost as the accumulated cost over the time interval
t, I] be defined as

T
Z (t,Px T = e V5=t (Xs,7s)ds (2.29)
[t—7x1] ¢
2'In mathematics, especially in topology, this procedure is called compactification (El Karoui,
Du Huu, and Jeanblanc-Picqué ; Shalizi ). Compact sets are extremely useful to find
optima.
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At time t = ty, the random initial cost will be denoted by Z(IP’X[HX 477) =

Z(t(b PX[io—TXJO} )
The objectis to find a policy 7 such that the following objective is minimised

T
J (t’PX[t_TX,tr”) =K { / GW(HOMXS’”SMS] -k [Z <t’PX[t—TX»1’7T>}

t

).

(2.30)
where
c(x,mg) = / c(x,u)ms(du) (2.31)
u
for any z € X and 7, a probability measure on .
Similarly, the relaxed optimal objective functional is defined as
I (6Px, ) = nf g (tPx, ., o7) (2.32)

The optimal policy that minimises the cost is denoted 7* € ;. The relaxed
optimal control problem is then to solve

T
* o o7x . —v(s—to)
J (PX[tO—TXatO]) =J (to, ]P)X[to—TX@O}) - ﬂler}ézgn = |:/t‘o ‘ ‘ (XS, WS) dsl

(2.33)
As for the control problem, when the initial distribution is degenerated, the

optimal objective functional is given by

T
J (x[tO_TthO}) = inf E |:/ 677(87150)6()(87 WS) ds ’ X[to—rx,to} = x[tO—TX,tO}:|

TEA to
(2.34)
Similarly, for the Markovian case, the optimal objective functional is given by
T
J* (24,) = inf E {/ e 1T (X, ) ds | Xy, = xt0:| (2.35)
TEA to

A particular case of the relaxed optimal control problem that is at the core
of Chapter 4 is now presented.

Maximum Entropy Control Problem

An important typical case is the maximum-entropy control problem. This ap-
proach intends to find the optimal policy that maximises the entropy of the
control process. The entropy is a measure of disorder (or uncertainty) of a ran-
dom variable (or its distribution). Thus, the cost function is given by

T
J (t,IP’X[t_TXWW) =E { / e V0o (X, ) — oM [, ds (2.36)

t
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where H denotes the entropy (Cover and Thomas ).

The regularisation introduced by the entropy term is a way to promote ex-
ploration. Chapter 4 discusses how this regularisation also impacts the robust-
ness of the final solutions.

The following section introduces the concept of a feedback policy, also re-
ferred to as a closed-loop policy. These policies are widely regarded as the
standard within the field of learning-based control.

Closed-Loop Policy

Definition 2.2.9 (History-dependent Policy). Lett € I. The measure-valued pro-
cess m = (m),c; is said to be a history-dependent policy if forany t € I, itis a
function of the past trajectory of the observation-control process ((Y),, , (Us),-,)-
Formally, for any t € I, there exists a mapping (probability kernel) 7 : Yol x

Ultotl — 1 such that
e = 7o (du | (Vo) yzp (Us)scr) (2.37)

The set of all admissible history-dependent policies is denoted 1.

Definition 2.2.10 (Markovian Policy). A feedback policy = = (m;),, is a history-
dependent policy where the associated mapping 7, is solely a function of the instan-
taneous observation Y, at any time t.

Formally, for any t € I, there exists a probability kernel 7w : ) — 11 such that

This kind of policy is sometimes called Markovian policy. The set of all admissible
Markovian policies is denoted 7.

In fact, definitions 2.2.4 and 2.2.5 from the control process section (2.2.3) are
particular cases of the definitions 2.2.9 and 2.2.10 for the policy.

The next section introduces a foundational concept in control theory: the
Dynamic Programming Principle. This principle allows for the solution of the
optimal control problem in a recursive manner.

2.2.6 Dynamic Programming Principle

Background

The 12-page preface to Richard Bellman’s seminal book Dynamic Programming
(R. E. Bellman ) is a great way to get started with the concept Dynamic
Programming (DP). Some elements of the author’s introduction are given here.

Factually, the term “Dynamic Programming” refers to a specific framework
furnishing a “versatile tool” to deal with the mathematical theory of multi-stage
decision processes. A multi-stage decision process is a process that is control-
led at several stages: decisions or controls are made to modify the underlying
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dynamics. In continuous time, a controlled process such as (2.1) is viewed as
a process on which an infinite number of decisions is made over the allotted
time.

On the first hand, the notion of “programming” traditionally reflects the act
or process of making plans or scheduling. In fact, it is intrinsically linked to the
concept of planning. This naturally contains the decision-making part of the
topic.

On the other hand, the term “dynamics” translates the temporal property
of the method to solve control problems. In Bellman’s own words, “time plays
a significant role” and “the order of operations may be crucial” in Dynamic Pro-
gramming.

A cornerstone result of this theory is given by the so-called principle of opti-
mality also known as Dynamic Programming Principle or functional equations
(Puterman ). Ronald Howard calls it the Recurrence Relation in his found-
ing book Howard 2,

The following section is devoted to the statement of this principle

Mathematical Formulation

First of all, here the dynamics are supposed to be Markovian. The following
remark gives further details on this assumption.

Remark 2.2.16 (Markovian Assumption). To formulate the Dynamic Program-
ming Principle, the dynamics are assumed to be Markovian as well as the policy
which belongs to <#}1. As Kolmogorov himself stated in his foundational paper Kol-
mogoroff 1931, a non-Markovian process can always be transformed into a Marko-
vian one by considering a higher-dimensional state space. Section 7.1.3 also provides
a development on the Markovian assumption. See also Hale ; S. Mohammed

for a treatment of delay differential equations as functional differential equa-
tions.

In mathematical statistics, the filter of a partially observable (also called
hidden) stochastic process is the conditional distribution of the instantaneous
state given all the past observations. It is sometimes referred to as a belief
state (X. Chen et al. ), Section 7.1.2 provides more details on this concept.

Formally, it is defined as follows

Definition 2.2.14 (Filter). Forany st € I, the filter IP’?Z*S] of the partially observable
dynamics (2.1)-(2.2) is defined as

P?] (dz) =P (X, € dz | Yj) (2.39)

*2Note that both Bellman’s and Howard's books are considered as edifying works of the se-
quential decision-making theory.
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Hence, ]P’?js] is the conditional distribution of the state process at time s given all

the observations fromt to s.

Remark 2.2.17 (Kalman Filter). The Kalman Filter is an essential instance of this
concept in the field of control theory and signal processing (Kalman and Bucy 1967).
It is obtained in the specific case of linear Gaussian dynamics and observations.

In this part, the optimal objective functional at time ¢t € [to, 7] is J*(¢, p)
where p is any state distribution supported on X" (e.g. p = Px,, the initial distri-
bution of the Markovian version of Eq. (2.1)-(2.2)). Thus, when p = 4,3, for some
x € X, the dynamics at time ¢ start from the state x and the optimal objective
functional is usually denoted J*(¢, x).

In avery general way, the Dynamic Programming Principle (DPP) (R. Bellman

; R. E. Bellman ) can be stated as follows for a finite horizon 7' < +o0.

Theorem 2.2.1 (Dynamic Programming Principle - Filtered Version). Let T" <
-+o00 and the dynamics of Eq. (2.1)-(2.2) be Markovian. The optimal objective func-
tional J* satisfies the Dynamic Programming Principle (DPP).

! Y = Y[
J*(t,Px,) = inf E / e VTP ) ds + T (1, Py, ) (2.40)
) :

71’6!271—][”

foranyt € I andt € [t,T) where

(P 1) /X / e(, ) (du) P (d) (2.41)

This general version of the DPP with filters is due to El Karoui
When the dynamics are fully observed, the filter has a simple form

Yt s
P (do) =P (X, € da | V) =P (X, € da | Xppy) = Ox, (2.42)

where ¢y, is the Dirac measure at X,. Naturally, the cost function simplifies
and the classical DPP is recovered.

Theorem 2.2.2 (Dynamic Programming Principle - Fully Observed Version). Let
T < 400 and the dynamics of Eq. (2.1)-(2.2) be Markovian. The optimal objective
functional J* satisfies the Dynamic Programming Principle (DPP).

t
J*(t,Px,) = inf E / e "e( X, my)ds + J* (T, Px,) (2.43)
t

WEMI-][M

foranyt € Iandt € [t,T) where
(X, mg) = / (X, u)mg(du) (2.44)
u
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When the time horizon is infinite, a version of the DPP is given by the follow-
ing theorem. Recall that J*(p) = J*(0, p).

Theorem 2.2.3 (Dynamic Programming Principle - Infinite Horizon). Let T' =
-+o00 and the dynamics of Eq. (2.1)-(2.2) be Markovian. The optimal objective func-
tional J* satisfies the Dynamic Programming Principle (DPP).

t ~
J*(t,Pyx,) = inf E / e VT e( X, my)ds + e LT (¢, Py,) (2.45)
t

e 47/1_1[”

foranyt e Iandt € [t, +o0).

Formulas (2.40),(2.43) and (2.45) are the continuous-time versions of the Dy-
namic Programming Principle.

In simple words and considering the case of Theorem 2.2.2where Py, = 6,
for some state z € X (the initial state is known and fixed), the DPP is a consis-
tency condition which holds between the value of the optimal objective func-
tional for a given state and its possible successors states (Sutton and Barto

).
This recursive relation shows that the expected objective value of the state
x € X, or some distribution over the states Py, at time ¢, can be split into two
components: the immediate cost between ¢ and ¢ which is the integral term in
(2.40)-(2.43) and the discounted expected value of the objective starting from
successive states Xj.

Hamilton-Jacobi-Bellman

By letting ¢ — t, a differential form is obtained from the DPP equations. It yields
a second order, nonlinear partial differential equation called Hamilton-Jacobi-
Bellman equations (HJB).*
A smooth solution of the HJB equation is a candidate solution of the DPP equa-
tion. The so-called verification theorem shows that this solution coincides with
the optimal objective function of the DPP. The main drawback of this approach
is that optimal objective functions are not smooth in general (Pham ) thus
not all regular HJB solutions can represent optimal objective functions.
Consequently, a type of weak solutions of partial differential equations called
viscosity solutions has been developed in the 1980s by Michael Crandall and
Pierre-Louis Lions as a suitable framework to study stochastic control prob-
lems (Bardi and Capuzzo-Dolcetta ; Trélat ).

The link from the continuous time to the discrete time point of view start
with the following section.

23The equation is not presented here for the sake of brevity.
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2.3 Sampling

Even though many real-life control systems are continuous in time, it is some-
times practical to transport the framework in the discrete-time realm. Notably,
this widens the range of possible methods to solve the control problem, at the
price of approximation errors. Moreover, it allows also representing the prob-
lem from an analogue signal to a numeric signal point of view (Salomon ).

2.3.1 From Analogue to Digital

An analogue signal represents a continuously variable physical quantity. In prac-
tice, this signal is first sampled and a sequence of points is obtained. The set
of those chronologically ordered measurements is called the digital signal.

The idea of sampling consists of defining a discrete time system such that
the trajectories of this discrete time system and its corresponding continuous
time system coincide at the sampling times (Grune and Pannek , Chapter
2). This control setup is also known as sampled-data systems.

Time Partition

With this in mind, the interval I = [t,, T] C R, is discretised with a sequence of
K e N time points representing sampling instants. Let [to, K] denote the set
of integers from ¢, to K, denoted by [to, K] = {to,..., K}. If K = 400, then
[to, K] = N.

Definition 2.3.1 (Deterministic Time Partition). Let K € N, A deterministic time
partition is a collection (sy),_, of time points in I such that

to<sp<s1<...<8g<T (2.46)

Note that when K = {+oc}, the collection is an ascending sequence of elements in
the interval 1.

Remark 2.3.1 (Discrete-time Indexing). Henceforth, a discrete time stochastic pro-
cess (X,, )i, that is indexed by a deterministic time partition (s;)X_, shall be di-
rectly indexed by the index k of the time points s, such that the stochastic process
is denoted (X;)i_,. However, the time partition indexing is kept for the rest of this
chapter to stress the link between the continuous-time and discrete-time processes.

Parenthetically, it is important to identify conditions under which the sam-
pled sequence faithfully represents the original signal. An important theorem,
called Shannon-Nyquist, gives conditions under which the original signal can
be reconstructed. This sampling theorem is the bridge between the analogue
(physical) world and the discrete-time (computational) world of digital signal
processing.
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There is a whole theory called Signal Processing treating the question of sam-

pling and other important related problems. The book Brémaud is a great

introduction, and the above-mentioned theorem is presented there.
Nonetheless, a more general type of discretisation can be considered.

Random Time Partition

Some sampling procedures may be subject to irregularity or perturbations. In
addition, the sampling times can themselves be controlled by an external agent.
Thus, it can be beneficial to work with random sampling times** which are spec-
ified by a random time partition.

Definition 2.3.2 (Random Time Partition). Let K € N". A random time partition
is a collection (ry.)X_, of I-valued random variables such that

lo<kKy<K <...<krg<T (2.47)

Note that when K = {+o0}, the collection is an increasing sequence of random
variables in 1.

The reader is invited to think of a random time partition as a noisy version
of a deterministic time partition. For instance, a Gaussian noise can be added
to the deterministic time partition to get a perturbed but still ordered partition.
This would represent the potential jitter in the sampling times.

Example 2.3.1. Let (sk)fzo be a deterministic time partition. A noisy time partition
(“k);f;{:o is obtained by adding a Gaussian noise to the deterministic time partition

K ~ N (sk, agk) (2.48)

where o2 € R, is chosen small enough to keep the order of the time points (this
can be probabilistically quantified, but there exists always a positive probability of
having a permutation since the support of the normal distribution is unbounded).

A better choice may be to consider finite support distributions or to define this
random partition recursively.

Indeed, as suggested in Example 2.3.1, the choice of the noise distribution is
not trivial. Moreover, the time partition can be generated dynamically, based
on previous data.

As a matter of fact, the time partition can represent the moments where
the system is interrogated®>. Possibly, it could define the times when the con-
trol process is updated. Thus, sampling times are also called decision times or
decision epochs. This gives rise to the concept of inter-decision times.

24|n probability theory, those are called stopping times.
25Measured or probed.
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Definition 2.3.3 (Inter-decision Time). The inter-decision time is the time elapsed
between two consecutive decision times (or sampling times).

For a random time partition (ry)i_,, the inter-decision times are the collection
(nx)5_, of random variables such that

Nk = K — Kk—1 (2.49)

Remark 2.3.2. In the deterministic case,
Nk = Sk — Sk—1 (2.50)

Now, core components of the sampled version of the continuous time con-
trolled stochastic process are defined: the discrete time distributions and tran-
sition probabilities. They provide a mechanism to describe random motion (Re-
vuz and Yor ).

2.3.2 Discrete time Distributions and Transition Kernels
Initial Probability Distributions

For some time partition s_,, =ty — 7x < ...s5; < ... <54 < 59 =to, Withrx €
N*, of the history function domain [ty — 7x, to], the initial probability distribution
of the state process is denoted IP’XS_TX X (d2yyy. .., dxo).

The initial observation Y,, is determined by the initial state as stated in (2.2)

]PYtU (dyo) = 5g0(X0) (2.51)

The initial inter-decision time 7y is t,.
PUO (dO'()) = 5{t0} (dO'()) (2.52)

Discrete-time State Transition Probability

The system (2.1) considered in this manuscript is stationary (the operator f does
not depend on time). Thus, a time independent (a.k.a. homogeneous) transi-
tion probability can be defined. However, this transition kernel depends on
the random inter-decision time 7, whose realisation o € S determines the du-
ration before the next decision time.

For any k € [0, K], the discrete-time state transition probability is defined as

P(da" | v, 2" u,0) =Px, , (do" | Xg =2, Xgry = 2", Uy, = u,mp = 0)
=Px,, ., (d2" | X;, =2, X =2 Uy, =u)

=Py, (d2" | Xo=2,X_, =2',Uy =u) (by stationarity)
(2.53)

Sk—TX

for any inter-decision time o and s; € I. Thus, P is independent of k.
This collection of probability measures that are (measurably) indexed (here by
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the elementsin X x X’ xU xS) are called transition kernels or transition functions
and plays a fundamental role in the stochastic process theory.

Now, detailed explanations of this unusual definition of P are given. The fol-
lowing description is inspired by Puterman , Chapter 11 and the references
cited therein.

In the scope of this thesis, the processes (X, )i, and (U, )x_, are consid-
ered as sampled versions of the continuous-time processes (X;)se; and (Us)ser-
Those discrete-time processes are called sampled processes, decision processes,
or embedded processes, while their continuous-time counterparts are called nat-
ural processes or underlying processes.

This distinction underlines the classical control settings where it is not pos-
sible nor necessary to control the system at any time. Sometimes, what tran-
spires between decision epochs provides no relevant information to the deci-
sion maker. In general, the system state (natural process) may vary between
decision epochs. However, the control is only allowed at sampling times (de-
cision process). An important instance of such a setting is when the control
process is not continuous but piecewise constant (g.k.a. jump process) and
the decisions performed are the modifications of the control signal. This is a
usual choice, and this will be the case for all the work presented in this thesis.
Additionally, the approach examined here enables the continuous-time nature
of the system dynamics to be maintained.

The process (X,),., equipped with the random time sequence (mk)szo such
that (X,, )&, is a Markov chain® is called a semi-Markov decision process (See
Lévy : Harlamov , for the uncontrolled case).

Here, the random variable X,,, is measurable w.r.t. the product .y ® .%; of
the o-algebra .7y endowing the state space X and the o-algebra .#y generated
by the intervals on I = [0,7].*” Then, for any w € Q, the point X,,  (w) €
X represents the value of the stochastic process X (w) = (X, (w)),., at the
random time sy, (w).

Discrete-time Inter-decision Time Transition Probability

The transition kernel O specifies the inter-decision time conditional distribution
forany k€0, KJ.

O(do | z,2" u) =P, (do | Xy, = 2, X7y = 2", Us, =) (2.54)

There are multiple interesting cases to consider. For instance, the inter-
decision times conditional distribution is independent of the state and control

28|n this case the policy and the inter-decision times are necessarily Markovian.

?7Basically, this means the random variable X,;, is indexed by a random time k. Conse-
quently, this variable carries information relative to events in both the state space and the
time interval.
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processes (O(do | z,2',u) = O(do)) for all (z,2",u) € X x X x U. Also, the
dependence on u € U highlights the impact of an exogenous agent (the sam-
pler) on sampling times. Another typical case is when the inter-decision times
distribution is degenerated (O(do) = d;yy(do)) for some s’ € I. In this case,
the sampling corresponds to a deterministic, equispaced time partition.

Another important historical and seminal case comes up when P is Marko-

vian where P(dz" | z,2',u,0) = P(dz" | z,u,o) for all (o, z,2',u) € § x X x
X xU.
Originally, the introduction of the inter-decision times n was motivated by the
need to model problems where the system state changes at random, irregular
times. The duration for which a stochastic process stays in the same state is
called sojourn time or exit time.

Notable examples are queueing control and equipment maintenance that

are more naturally modelled by allowing system interaction at random times.
Thus, for those problems there is an intrinsic notion of sojourn time, i.e. the
time spent in a state before a transition occurs.
In addition, when the sojourn time in a specific state, for a finite state space, (re-
spectively region, for a continuous state space) follows a geometric distribution
(respectively exponential distribution), the embedded state process (X)ser is
necessarily a Markov chain.

Incidentally, the idea of studying processes with more general inter-decision
times came independently and almost simultaneously from Paul Lévy and Wal-
ter Laws Smith in the mid-1950s (Grabski ). At that time, certain practical
problems compelled researchers to seek an adequate mathematical descrip-
tion. Attempts to apply Markov models to these problems were sometimes
unsatisfactory because the exponential distribution of the sojourn times was
not always appropriate (Harlamov , Preface).

Consequently, the community was looking for processes that are Markovia at
decision times but with inter-decision times that are not necessarily exponen-
tial. The semi-Markov process was born.

Again, the use of semi-markov models for modelling dynamics where the
system state is piecewise constant is not really the aim of the work presented
in this thesis. The state is supposed to vary continuously between decision
times. Rather, the inter-decision times will be used in Chapter 5 to construct a
randomised dataset of type D = (X, , Us,, Xx,,, )1, that maximises the infor-
mation in a sense which will be precisely defined.

In traditional presentations, the transition law Q of X, . on & x I is the
central object of interest. It is given here for the sake of completeness, but it
will not be used in the rest of the document.

Q(dx"do | x, 2" u) =Py

dz"do | XSk = ZE,X = xla Usk = U, kg = Sk)

(2.55)
Again, this equation can be simplified by the stationarity of the dynamics.

K +ng ( SE—TX
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Remark that this distribution is linked to P and O by
Q(dx"do | x, 2’ u) = / P(dz" | z, 2! u, 0 )O(do' | x, 2", u) (2.56)
do

If P is independent of ¢, then
Q(da"do | x, 2", u) = P(dz" | x,2",u)O(do | x,2',u) (2.57)

This is an example of conditional independence?® of X,, and n; given the ran-
dom variables X;,, X and Us,.

SE—TX

Discrete-time Observation Transition Probability

The observation kernel G reads

G(dy |z, 2", u) =Py, (dy | Xy, = 2, Xg vy = 2", Uy, = u) (2.58)

Discrete-time Policy

A discretised version of the history process is required to define history-based
policies. First of all, the discrete-time history space is defined for k € [0, K] as

AT — (Sx X x Y x U xS x X XY (2.59)

Note that the control is excluded from the k-th product.
In a similar manner, the discrete-time observable history space is defined as

AV = (SxYxUFTIxSExY (2.60)

Let (s,)X, be a deterministic time partition. A history process is a """V
valued random variable representing the sampling history up to time s, defined
as

HIYY = (15, Xog Yoo, Usgs -+ Uy sy X Yy (2.61)

Similarly, an observable history process is defined as
H777YU (77507 YSoa US()7 cety Usk_la n8k7 }{Sk) (2°62)
A point in the history space .7V is denoted by

77,X:Y7U J— nyX7Y7U
hsk - (0807x807y807u807 ce 7usk,1ao'skaxskaysk) € jﬁg (263)

2|n probability, two objects (events, random variables, o-algebras) are independent if their
joint distribution is the product of their marginal distributions. Inspired by common sense,
two events are independent if the probability of their joint occurrence is the product of their
individual probabilities.
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Again,
YU _ n,Y,U
RS = (050, Ysos Usgs « - - » Usp,_1 5 Jsk,ysk) € A, (2.64)

Other spaces such as %Y’U and their corresponding points and random vari-
ables can be defined in a similar manner. In the case K = {400}, the limit
space 21X Y:U s defined as

AV — (S X x Y xU)" (2.65)

o0

and the associated objects similarly (e.g. H7XY:V, p1XYU are sequences in-
dexed by N).

Echoing the continuous-time policy definition in Definition 2.2.6, a discrete-
time policy is defined as follows

Definition 2.3.4 (Discrete-time Policy). A discrete-time policy denoted (Wk)kK:o is
a measure-valued discrete-time stochastic process such that m, € 11 for any k €
[0, KJ.

Definition 2.3.5 (Discrete-time History-dependent Policy). A discrete-time hi-

story-dependent policy (ﬂk)szo is a discrete-time policy such that for any k € [0, K],

it is a function of the past trajectory of the observation-control process H. ,Z’Y’U.
Formally, there exists a mapping 7 : """V — 11 such that

= 7 (du | ) (2.66)
Thus, forw € ),
T (W) = 7, (duk | H,Z’Y’U (w)) = T <duk | hZ’Y’U> (2.67)
which writes
T (w) = 7, (duk | Osgs Ysgs Usgs - - > Usy_y» Oss ysk) (2.68)

The definition for Markovian policies is straightforward.

Definition 2.3.6 (Discrete-time Markovian Policy). A discrete-time Markovian pol-
icy (ﬂk)fzo is a discrete-time policy such that for any k € [0, K], it is a function of
the current state Xy. Formally, there exists a mapping 7 : X — 1l such that

Thus for w € §,
2.3.3 Discrete-time Process distribution
In this part, the Markovian case is considered

P(dz" | z,2' ,u,0) = Pldx" | x,u,0) (2.71)
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Markovian case

In the Markovian case, Tx = 0 and 7y = 0, thus

P(da" | w2, u,0) =Px, ,, (d2" | X, = 2,Us, = u,ms, = 0) = P(da" | z,u,0)

(2.72)

and
O(do | z,2',u) =P, (do | X5, = 2,Us, = u) = O(do | z,u) (2.73)

and
G(dy |z, 2", u) =Py, (dy | X, = 2,Us, = u) = G(dy | z,u) (2.74)

and
Q(dx"do |z, 2, u) = Px, ,, (d2"do| X, = 2,Us, = u, Ky = s) = Q(da"do |z, u)
(2.75)
Notably, the initial probability Py, x. (dx.y,...,dzo) does not generate a

history function any more and boils down to the probability Py, (dx).
Now, the probability distribution P, x.v.v of a random history H7*"V =
Sk

(50> Xsos Yoo Usgs - -+ Usy 13 sy» X, Y, ) for any finite k € [0, K]\ {+o0} can be
written in a useful recursive form involving only initial probabilities and transi-
tion kernels.

Proposition 2.3.1 (PO-SMDP Distribution). Let k € [0, K] \ {400}, the distribu-
tion of the history process H*Y:U js given by

]P)Hg];Y,U(dO'sO, dTsy, AYsy, QUsys - - -, dos,, dg, , dys, ) =Py (dos,)Px, (drs,)Py, (dys,)
Tso (dUsy | Ysg)O(dos, | sy, sy )P(ds, | Tsy, Use)G(dYsy , | sy Tsy)

s, (dus, | hnYU7yS1) """ Ty (dus, _, | thYQU’?JSk)O(dUSk | Ty, Usy_y)

P(d'rsk ’ xsk,1 ? uskfl)g(dyslﬂ | uskxsk)
(2.76)
In the case K = {+oc}, the distribution P, x.vu of the history process H2:XY:U js
an extension? of the finite dimensional distributions given by (2.76). of the finite
dimensional distributions given by (2.76).

Proof. The first part of the proposition is obtained by applying the chain rules
for conditional distributions. Then, the probability distribution can be extended
to the infinite horizon case by the lonescu-Tulcea Theorem (Neveu : Klenke

). O

*Here, an extension means that the infinite dimensional probability measure P, x.v.v is
equal to the finite dimensional probability measure IPHn x.v.v on the subspaces of possible

trajectories of size k € N (called k-dimensional marginal distributions or projections).
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The recursive formula (2.76) of Proposition 2.3.1 is useful to sample the his-
tory process and implement Monte Carlo methods (Stoehr ). Moreover, it
is a core component of the Markov Decision Process (MDP) and their generali-
sation (PO-MDP, SMDP, etc.).

The extension to the non-Markovian case is challenging.

2.4 Simulation and Numerical Approximation

In the previous section, the shift from the continuous-time world to the discrete-
time has been motivated by the necessity to measure and process the signal
through a simplified and more tractable representation.

On the other hand, it is not always possible nor desirable to interact with
the real system directly. A variety of reasons can be invoked: the high cost of ex-
periment, the danger of the environment, the difficulty of accessing the system,
the need for reproducibility, and the necessity of trying a large number of inde-
pendent scenarios3°, (see Bélanger, Venne, and Paquin , for arguments in
the domain of Real-Time Simulation).

In this context, numerical simulations are essential to overcome these tech-
nical limitations. Despite being subject to inaccuracies, their proficiency has
been proven in numerous fields such as plasma control (Degrave et al. )
Robotics (Choi et al. ), and more broadly in Physics and Engineering (Stein-
hauser ). These simulations can also be computationally costly while requir-
ing calibration3' (parameter estimation). Thus, understanding and analysing
the different simulation schemes is important to anticipate outcomes and to
design efficient algorithms.

The field of Numerical Analysis (Legendre ) is the theoretical backbone
of simulation engineering. Its purpose is to design and analyse numerical calcu-
lation methods or algorithms. This section presents the basic methodology to
approximate the continuous-time controlled stochastic process (2.1)-(2.2) by its
discrete-time counterpart. A complete presentation of SDE numerical approxi-
mation is given in Kloeden and Platen . The paper Buckwar develops
the theory for the delayed case (SDDE).

2.4.1 Approximation with Delayed Dynamics and the Euler-
Maruyama Scheme

The continuous-time controlled stochastic process (2.1)-(2.2) is approximated
by a discrete-time controlled stochastic process through the standard Euler-

3%In statistics, this is linked to the notion of statistical significance (M. Hoffman ; Colas,
Sigaud, and Oudeyer ).
3'In robotics, this is often called Sim2Real transfer or reality gap (Koos, Mouret, and Doncieux
; Hofer et al. ).
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Maruyama scheme.3*This scheme is the standard approach for SDE numerical
approximation.
Delay differential equations lead to various complications in their solution
from both the theoretical and numerical points of view (Bellen and Zennaro
). The main difficulty is due to the delay term 7x which is in general un-
known or unpredictable (sometimes 7x depends on the time or the state). Sim-
ilar difficulties arise in the observation process with the delay term 7.
The first approaches to the numerical solution of deterministic DDE in the
sense of (2.11) go back to the 1950s. Indeed, the seminal approach of Elsgolts
imposed serious constraints on the time partition a.k.a. time mesh.
Given a sequence of N points forming a deterministic time partition33 (¢,)Y_,
it can be imposed that for all & € [0, N], either ¢, — 7x < tgorty — 7x €
(tx)2_, (a time partition of this type is called Tx-valid). In this way, the following
Euler approximation of the state process is well-defined. The constraint can be
reinforced by requiring that the time partition is also y-valid.

Definition 2.4.1 (Euler-Maruyama Approximation of the General Dynamics).
For a Tx-valid time partition (t;,)Y_, with time step size §;,, = t;.1 — tx, define
Tk — tk —TX.

The general discrete-time approximation of the state process is given by:

th_H = th + f (thath—Txa Utk) 5tk + EX(th7 Utk) 5Wtk7 (2'77)

where W, =W, ., — W, are the Brownian increments.
Similarly, for the observation process and a time partition that is Tv-valid, the
discrete-time approximation is:

}/;karl = Y;‘/k + g (th7 thf‘l‘ya Utk) 5tk + GY(th7 Utk) 5Wt2ka (278)
where §W; are the Brownian increments associated with the observation noise.

Since the increments are independent and normally distributed, the recur-
sive formula (2.77) and (2.78) can be simplified with the following remark.

Remark 2.4.1 (Euler-Maruyama Scheme). The discrete-time approximation of the
state process (2.77) and observation process (2.78) can be rewritten as:

(2.79)

th+1 = th + f (Xtm th—Txv Utk) 6tk + N (07 €X<th7 Utk))
Y;fk+1 = }/;/k +9g (th? th*‘f‘w Utk) 6tk +N (07 €Y<th7 Utk))

where N (0, ex(z,u)) is a Gaussian process with covariance operator e x(x, u).34The
noise for the observation process is defined similarly.

32Simply the extension of the Euler method to the stochastic differential equation case.

33n the remaining, the time mesh will always be a deterministic time partition. For a modern
example of adaptive stochastic mesh construction, see Kelly and O'Donovan

34Remember, ex and ey are operator-valued mappings. In the finite-dimensional case, they
are positive definite matrices. They define quadratic forms.
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By defining discrete-time dynamics operators, the recursive formulations
can be simplified further.

Definition 2.4.2 (General Discrete-time Dynamics). Let the discrete-time dynam-
ics operator F defined as
F=1d+ fo, (2.80)

and define the observation operator G similarly as
G = Id + goy, (2.81)

Suppose that the time delay Tx allows for a Tx-valid time partition, and the same
holds for the observation process with 1. Then, the state delay index is defined as

rxy ‘= Tx with t, —Tx = tkfrx (2.82)

forrx € N*. Hence, the value k — T is viewed as an index in the time partition. The
observation delay index ry is defined similarly.
The discrete-time dynamics of the state and observation processes are given by:

(2.83)
Yigr = G (Xp, Xi—ry, Ur) + 0, N (0, ey (Xi, Uy)) -

{Xk+1 = F (Xp, Xp—ry, Ur) + 05, N (0, ex (X, Ur))
The discrete-time dynamics provide an approximation to the continuous-time dy-
namics over discrete time steps ¢,,, with noise terms accounting for the randomness
introduced by the stochastic processes.

In this manner, a discrete-time formulation is obtained from a continuous-
time stochastic system.

Moreover, since 7x-valid time partitions are too restrictive, the following
remark introduces a more general but less accurate approach.

Remark 2.4.2 (Approximation of the Delayed State and Observation Processes).
Approximations of the state X,_, . and observation Y}, can be performed when
the time partition is not Tx-valid or Tv-valid. For instance, Feldstein introduced
piecewise constant or linear interpolation for the state process while a similar ap-
proach can be applied to the observation process. This construction is based on the
values of the state and observation processes (X;)N_, and (Y)Y, at the discrete
times (tk){qu. This results in approximated delayed state and observation processes
Xy_r, and Y,_, that can be plugged into the discrete-time dynamics of equations
(2.83) and (2.79).

Moreover, the linear equispaced time partition is a common choice for nu-
merical simulations.

Example 2.4.1 (Equispaced Time Partition). Let &;, = d for any k € [0, N]. Then,
the time partition is equispaced: t;, = ké.
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Finally, the quantities involving time integrals can also be discretised with
Riemann-sum.

Remark 2.4.3 (Riemann Sum Discretization). In the discrete-time approximation
of a continuous-time controlled stochastic system, quantities involving time inte-
grals can be approximated using the Riemann sum. For a general integral over the
time interval [t, T'| of any integrable function ¢, the integral

T
/ ¢(s)ds (2.84)
¢

can be discretised as a Riemann sum:

=

¢(tr)0,,, (2.85)
0

e
Il

where (t,)3_, is a time partition on [t, T] and 6,, = t;11 — t;, is the time step size
(see Lamboley , for a reminder on Riemann sums).

Similarly, for stochastic integrals the approximation of Remark 2.2.2 given by
Eq. (2.5) is performed.

2.5 Delay, Sampling Times and Discretisation
Compatibility

Whether for sampling or numerical approximation purposes, time partitions
have been a central element in the previous constructions. Up to know, the
specification of time partitions has been left open except for the 7x-validity con-
dition in Section 2.4.1. From a practical point of view, some choices of partitions
are rather natural and convenient.

Nonetheless, a possible kind of incompatibility between sampling times and
discretisation times may arise when the sampling times do not coincide with
the discretisation times. Therefore, a notion of compatibility is defined and
discussed in the following.

In this section, it is supposed that the random sampling times are given
by the random partition (Hk)szo and the discretisation times are given by the
deterministic partition (tk),ivzo. The compatibility condition is now defined.

Definition 2.5.1 (Discretisation and Sampling Times Compatibility). The sam-
pling times (nk)szo are said to be compatible with the discretisation times (tk)],fzo
when they are a subsequence of the discretisation times (a.s.).

Hence, the compatibility condition ensures sampling is well-defined (with
probability one) for a given discretisation.

A common case of compatibility is when the sampling times are the same
as the discretisation times.
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Example 2.5.1 (Sampling-times Equal to Discretisation-times). Let the sampling
times be equal to the discretisation times, i.e. k. = ty for all k € [0, K].3> Then, the
sampling times are compatible with the discretisation times and K = N.

Consequently, a ubiquitous setting encountered across fields is when these
two assumptions hold:

* the time interval is uniformly partitioned as in Example 2.4.1

*+ the sampling times are the same as the discretisation times as in Exam-
ple 2.5.1.

In other words, k = (t3),_, and t; = ko.
The following remark discusses the case where not all points used during
simulation are sampled.

Remark 2.5.1 (Sampling Frequency). By Definition 2.5.1, being compatible implies
K < N. Inthat case, the sampling frequency is always lower than the discretisation
frequency.

On the other hand, when the sampling times are not compatible with the
discretisation times, an approximation approach that is similar to the one of
Remark 2.4.2 can be pursued. This way, the sampled quantities are estimated
using the trajectory described by the discretisation times used for numerical
approximation.

2.6 Conclusion

In this chapter, the continuous-time stochastic control problem was introduced
(Section 2.2). The goal was to set a framework that is general enough to encom-
pass the range of problems encountered in this thesis.

The continuous-time stochastic control problem was formulated as the so-
lution of a stochastic differential equation with delay. The notion of policy (Sec-
tions 2.2.4-2.2.5) that generalises the concept of control and that is widely used
in the Reinforcement Learning literature was introduced.

In addition, the Dynamic Programming Principle (Section 2.2.6) was outlined
as a central way to solve the continuous time stochastic control problem. This
principle is a key concept in the field of Reinforcement Learning.

Then, the question of sampling (Section 2.3) was addressed to link the con-
tinuous time problem to the discrete time setting. This gives rise to the concept
of sampled-data systems.

35The notation [0, K] stands for the set of integers from 0 to K included. This will be used
throughout the document.
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Finally, the numerical approximation of the continuous time stochastic con-
trol problem was discussed (Section 2.4). The compatibility between the sam-
pling times and the discretisation times was defined (Section 2.5). This compat-
ibility is crucial for the well posedness of the problem.
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3 Learning-based Control with Dis-
crete Decision Processes

This chapter introduces the discrete time point of view of the decision process
which is widely used in the Learning-Based Control literature.

First, the general discrete-time decision process is defined (Section 3.1) to-
gether with the discrete time version of Dynamic Programming (Section 3.1.4).
The transition probabilities characterisation is presented which connects to the
notions of sampling and data for learning applications (Section 3.1.2).

The Learning Theory (Section 3.2) is then introduced in a sufficient generality
to encompass the range of problems encountered in this thesis.

Subsequently, the application of the Learning Theory to the optimal control
problem, namely Learning-based Control, is introduced (Section 3.3). Multiple
important concepts and paradigms that are used throughout the thesis are
presented, such as the policy iteration procedure or Model Predictive Control.

Finally, the chapter concludes with a presentation of the several control-
led dynamics that are of interest in the field of control of Dynamical Systems
(Section 3.4). All the systems presented in this section are used in the various
numerical experiments of this thesis.

3.1 Discrete-Time Decision Processes

In this section, discrete-time decision processes are introduced.

3.1.1 General Discrete Decision Process

A general discrete-time formulation of the state and observation dynamics for
learning-based control is given as follows.

Definition 3.1.1 (General Discrete Decision Process - Recurrence). The state pro-
cess X = (Xi),cn IS governed by the following discrete-time stochastic recurrence
equations:

{ X1 = F (X, Xj—r, Up) + N (0, ex (X, Uy)) (3.1

Xu_rvo]] ~ IP>)([[77",0]]
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where:
« F: X xX xU — X is the discrete dynamics operator
+ r € Njs the time delay index

* ex is a kernel valued function of X x U. Thus for any x € X and u € U,
ex(z,u) is the kernel of a Gaussian process (a quadratic form). If X is a
function space, the kernel is a covariance operator, otherwise if X is a finite-
dimensional space, the kernel is a covariance matrix.

* Py g is the distribution of the history process X_,q; = (Xo,..., X_;)

[7

The observation process Y = (Y),cy follows a similar discrete-time stochastic
process:

{Yk+1 = G (Xp, Xi—r, U) + N (0, ey (X5, Uy)) (3.2)

Yo ~ o (x0)

where:
* G: X xX xU— Y isthe observation operator
* ey Is defined similarly to ex
* Go : X — Y s the initial observation operator

This kind of system will now be referred to as decision process or discrete con-
trolled process. The procedure to get a discrete-time controlled process from a
continuous-time random dynamical system modelled as a partially observable
stochastic differential equation has been described in the previous chapter. No-
tably, Remark 2.3.1 and the exposition in Section 2.5 ensure the expression is
well-defined and can be derived from a stochastic delayed differential equa-
tion.

Notations are kept consistent with the continuous-time case whenever pos-
sible, the context should make the distinction clear. For instance, the admissi-
ble policy space is still denoted by «#; and the subset of Markovian admissible
policies by ..

3.1.2 Transition Probabilities Characterisation
In the discrete case, the transition probabilities are given by
P(da" | x, 2’ u,0) :
O(ds | x,2',u) :

G(dy |z, 2" u) :
)

m(du | HPYY

Pxi (da" | Xy = 2, Xpp = 2", Uy = u,m = 0)
P, (ds | X =2, X—p = 2/, Uy = u)

Py (dy | Xip = 2, Xp—p = @', Uy = u)
P k

ol | HPYY = ™)

(3.3)
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foranyk e N, z, 2, 2" € X, u € U, o0 € N*. Note the support of the interdecision
time 7y, is now in N*.

There is an alternative formulation of this discrete-time controlled process
that is commonly used in modern literature. In a particular case, this formula-
tion is equivalent to the one given in Definition 3.1.1.

Definition 3.1.2 (General Discrete Decision Process - Transition). The tuple given
by (X, U,Y,P,G,O,r) is called discrete decision process.

Several important cases of discrete decision processes in the field of control
are now presented.
Partially Observable Semi-Markov Decision Process (PO-SMDP)

When the state transition probability and the observation transition probability
are Markovian, in the sense

P(dz" | z, 2, u,0) = Pldx" | z,u,0) (3-4)

G(dy | x,2',u) = G(dy | x,u) (3.5)

forallz, 2’ 2" € X,u € U and o € N*, the process is called a Partially Observable
Semi-Markov Decision Process (PO-SMDP).

Partially Observable Markov Decision Process (PO-MDP)

Again, suppose the state and observation transition probabilities are Marko-
vian, if the interdecision time transition probability is degenerated to a constant
value, i.e.

O(ds | z, 2", u) = d6g13(ds) (3.6)

Then the resulting process is called a Partially Observable Markov Decision Pro-
cess (PO-MDP).
Semi-Markov Decision Process

Now suppose that the state is Markovian and the system is fully observable,
i.e. the observation operator is the identity operator, G = Id. Equivalently, the
observation transition probability is degenerated on the identity operator, i.e.

g(dy | Z, (ﬂl, u) = 6{x} (dy) (3.7)

Markov Decision Process (MDP)

Finally, the most important case coined Markov Decision Process (MDP) by the
applied mathematician Richard Bellman in the 1950s is when the system is fully
observable (3.7) and the interdecision time is degenerated to a constant value
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(3.6). This is also called Controlled Markov Process (CMP) by Dynkin and Yushke-

vich . The origin of those processes can be traced back to the work of
Richard Bellman in the 1950’s (R. Bellman ; R. E. Bellman ) and Ronald
Howard in the 1960's (Howard ).

3.1.3 On the Equivalence of Formulations

Consequently, given a system of discrete-time stochastic recurrence equations
given by Definition 3.1.1, one can extract transition probabilities as in (3.3) and
obtain a decision process in the sense of Definition 3.1.2. Reciprocally, it can
be questioned whether, given a specification of transition kernels as in Defini-
tion 3.1.2, a probability distribution P exists such that the transition probabilities
are determined by the relations in (3.3).

The answer is affirmative and guaranteed under weak conditions by the
lonescu-Tulcea theorem (Neveu ; Loéve ; Klenke ): given the tran-
sition probabilities aforementioned, there exists a probability distribution P
such that the transition probabilities satisfy the relations in (3.3).

To go further, the question can be extended to the existence of a system
of stochastic recurrence equations characterised by a state evolution operator
F and an observation operator G such that X1 = F(X, X)_,, Uy, €%) and
Vi1 = G(Xp, Xi—r, Up, €8) where €% and €} are i.i.d. random variables3 . As a
result, it would be equivalent to specify either a recurrence equation or a set
of transition probabilities. It happens that in the fully observable, Markovian
case (MDP) the existence of the state evolution operator is guaranteed (Gih-
man and Skorohod ). Both ways have their advantages and drawbacks,
in terms of interpretability and practicality (Onésimo Hernandez-Lerma and
Lasserre ).

3.1.4 Discrete Control Problem

Here we present the essential elements of the optimal control problem in dis-
crete time. A detailed treatment of the general continuous-time case is given
in Chapter 2.

Optimal Control Problem (Discrete Time)

The optimal control problem in discrete time follows a similar structure to the
continuous-time case, and can be obtained by approximating the time integral
by a Riemann sum, (see Remark 2.4.3). The policy m = (7). Must minimise a
cost function defined over a finite (K < +00) or infinite horizon (K = +0).

36The~existence of such a system is sufficient to ensure the existence of a probability distri-
bution IP verifying the desired properties.
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The random total cost from step & in discrete time is defined as

K
Z (kP go7) = 37 (Xiym) (3.8)
i=k

for any discrete-time step k € [0, K], where v € [0, 1] is a discount factor, and
c: X xU — Ristheinstantaneous cost function. From the initial step, the total
cost is denoted by Z(IF’X[[_W]] ,m) = Z(0, Pxy_op: ™)

This quantity is a random variable, and the expectation of the random total
cost is the objective functional.

The typical objective functional in discrete time is then given by

K .
> A (Xim)
i=k

Remark 3.1.1 (Series Convergence). The control problem is also defined for an
infinite horizon, i.e., when K = +oc. In this case, the condition v < 1 is sufficient
to ensure convergence of the sum when the cost function is bounded.

J (kP y7) =E —E|Z (kPx_7)] (39

The optimal objective functional in discrete time is then defined as

I (B Px ) = inf T (kPy07) (3.10)

TES

forany k € [0, K].
Thus, the optimal control problem becomes

I (Px ) =7 (0.Px ) = inf E

TES

Zv ¢ (X, ] (3.1)

Exactly as in the continuous-time case, when the initial condition is fixed, the
optimal objective functional is given by

J* (ks por) = T (kduy ) = inf E

TES

K
S e (Xom) | X — xﬂrm]
i=k

(3.12)
The optimal objective from the initial step k& = 0 is denoted J* (z[_,q)) =

J* (O’ l‘[[_rvo]])'
Similarly, for the Markovian case, the optimal objective functional is given

by
J* (k,x)=J"(k,6,) = inf E

WEQfH

ZW Xu 7TZ | XO - l‘] (313)

Again, J* (x) = J* (0, x) and this quantity is commonly called optimal value func-
tion.

59



Another fundamental concept which remains to be introduced is the op-
timal expected total cost when both the initial condition and the control are
fixed. This mapping is here called optimal Q-function and defined in the Marko-
vian case as

K
Q" (x,u) = 7T1€I1‘7£HIE ; v (X, m) | Xo=2,Uy = u (3.14)

Given any policy 7 € «; and for k = 0, the value function x — J(x, ) and
the Q-function (z,u) — Q(z,u, ) are defined as the expectation on which the
infimum is taken in the optimal objective functional (Eq. (3.13)) and the optimal
Q-function (Eq. (3.14)), respectively.

Consequently,
J'(z) = inf J(@,7) (3.15)
and
Q" (z,u) = 7r1&%{ Q(z,u,) (3.16)

foranyx € X and u € U.

Maximum Entropy Control Problem

The Maximum Entropy Control Problem in the discrete-time case is charac-
terised by the objective functional

T (k Px, o )

Z’y le 7T'L H [Trz]] (3-17)

This objective is referred to as the soft objective functional in the RL litera-
ture Haarnoja, Tang, et al. . The optimal soft objective functional follows
the same notation rules as in the standard case (a.k.a. hard objective func-
tional). An important particular case is the optimal soft value function, defined
as

Jy, (z) = inf E

TET

K
Zv (X, m) — o H[m] | Xo = x] (3.18)

Thus, the optimal soft Q—functlon is defined as

Q% (z,u) = inf E

WEQ{H

Zv (Xs,m) — M [m] | Xo = 2,Uy =u (3.19)

In discrete time, the dynamic programming principle is referred to as the
Bellman equation. Again, in this case the dynamics are supposed to be Marko-
vian thus P, = Px, for any k € N, where Py;,_, 4 is the distribution of the
history process Xp—rx) = (Xi—r, - - ., Xi).
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Theorem 3.1.1 (Bellman Equation). The optimal objective functional satisfies the
Dynamic Programming Principle

k+j

J* (k,Px,) = ér;{fME > e (X m) + T (k+j+ l,IP’Xkﬂ.H)] (3.20)
= i=k

forany k € [0, K], where j > 0.
Moreover, a crucial functional equation can be obtained for the optimal objec-
tive functional when K = +oco, known as the Bellman equation

k+j
‘]* <k7IP)Xk) = ér:{fME Z’yic (Xkaﬂ-k) +’7j+1j* (k7IPXk+j+1)] (3-21)
wEd] ik

Thus for j = 0, the Bellman equation is

J* <k7 ]PXk) = inf E [f)/kc (Xk7 7Tk> + VJ* (k’, IEDXk+1)} (3-22)

M
TEA

and if k = 0, the Bellman equation is

J*(Px,) = inf El[c(Xo,m)+ 7" (Px,)] (3.23)

71'6!4)/1-11”

These latter equations are fundamental in the dynamic programming the-
ory and define an infinite dimensional (function space) fixed-point problem
(this fixed-point property will be used in the next chapters to build learning-
based control algorithms). Hence, the DPP is sometimes called the functional
equation in R. E. Bellman

Many learning algorithms are based on the Bellman equation. The equa-
tions (3.21) and (3.23) are the basis of learning based control theory and algo-
rithms (Sutton and Barto ; A. Agarwal, Jiang, and Kakade ; Bensoussan,
Y. Li, et al. ; Meyn ). Chapter 6 discusses an extension of the Bellman
operator to the random total cost defined in Eq. (3.8).

The next section will focus on the learning theory before presenting the
learning based control approaches.

3.2 LearningTheory, Generalisation and Complex-
ity Measures

3.2.1 Statistical Learning
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Notations and Definition

Basically, three elements are essential in learning theory3” (Shalev-Shwartz and
Ben-David ): a dataset D, a model f, and a learning task £.3¥First, the data
are modelled by some random variable Z with distribution P, with values in
a domain Z. The dataset D usually contains mp |dent|cally and independently
distributed (i.i.d.) samples3® Z, i.e. D = (Zi,..., Zy,) Where Z; ~ P5. Thus, Pp
is the joint distribution of the elements of the dataset D. Second, the model
is an element f of the hypothesis class F which is often infinite dimensional.
Third, the learning task is defined by a loss function ¢ which quantifies the task
error the model f makes for a given observation Z.

Definition 3.2.1 (Loss function). A loss function is a mapping { : F x Z — R,
that maps a hypothesis and an observation to a positive real number. Sometimes,
the loss function is referred to as a learning task.

Example 3.2.1 (Quadratic loss in Supervised Learning). Regarding supervised
learning one has Z = X x Y, the observation and label spaces and possibly F =
( fg) seo With © C R¢ some parameters space of dimension dy associated to the

quadratic loss ((fy, (z,v)) = (fo(x) —y)? for any (z,y) € X x ).

Generalisation

As stated in Mohri, Rostamizadeh, and Talwalkar , “Machine Learning is
fundamentally about generalization”. Roughly, this can be understood as the
ability of a model (or hypothesis) f to perform well on unseen data or data not
used to estimate the model. In the standard supervised learning setting, the
generalisation error is defined on the set F of all possible models, the so-called
hypothesis set (this set is traditionally denoted by H but this symbol is kept for
the entropy).

Definition 3.2.2 (Gerjeralisation Error). The generalisation error .J, also called the
risk, of a hypothesis f € F is defined as

J(Pz, f) =Ep,[l(f,2)] (3.24)

where EFz denotes the expectation w.r.t. the distribution IP5.
The optimal generalisation error is defined as

inf J(Pg, ) (3.25)
fleF

37Here the classical, also known as frequentist, approach is presented. Details and compar-
isons between statistical approaches are given in Section 3.2.3.

38|n this section, notations from statistical learning theory are introduced with a bar over the
symbols to distinguish them from the RL ones.

39This hypothesis is sometimes relaxed in the literature (Steinwart, Hush, and Scovel ).
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for a fixed data distribution P . )
If the optimal generalisation error (3.25) is attained by a model f*, it is called
the oracle model.

In other words, learning is the process of finding a hypothesis f e Ffroma
dataset D that minimises the generalisation error J, hence being by definition
a generalisation problem.

Example 3.2.2 (Mean square error (MSE)). Regarding the supervised learning
setting with quadratic loss, one obtains the commonly called mean square error
J(Pxy, f) =Ep  [(f(X)—Y)?| where Z = (X,Y) has been chosen.

Learning-based Control case

In the case of reinforcement learning, one can be interested in the generali-
sation error in terms of regret (Y. Duan, Jin, and Z. Li ) for a given policy
f = ® € F = 1II. There are several definitions of this concept in the literature,
in a general form it can be defined as

Definition 3.2.3 (Regret). The regret for a given algorithm A is defined as

Regret (7) = J™ — min J(7) = J(7) - J(7¥) (3.26)

Hence the regret can be generally understood as the spread between the
performance when taking optimal decisions and the target policy performance.

In the next section, a rigorous answer to the fundamental question of learn-
ing theory, pioneered by Leslie Valiant (Valiant ), is presented.

3.2.2 Probably Approximately Correct Learning

The principal objective of statistical learning is to provide bounds on the gener-
alisation error, so-called generalisation bounds. In what follows, it is assumed
that an algorithm A returns a hypothesis f € F from a dataset D. Note the
dataset D is random and the algorithm A is a randomised algorithm.

As the hypothesis set F typically used in machine learning is infinite, a prac-
tical way to quantify the generalisation ability of such a set must be found. This
is done by introducing complexity measures, which enable the derivation of gen-
eralisation bounds.

Definition 3.2.4 (Complexity measure). A complexity measure is a mapping M :
F — R, that maps a hypothesis to a positive real number.

According to Neyshabur, Bhojanapalli, et al. from which this formal-
ism is inspired, an appropriate complexity measure satisfies several proper-
ties. In the case of parametric models f, € F(0) with § € © C R%, it should
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increase with the dimension dy of the parameter space © as well as being able
to identify when the dataset D contains totally random, spurious, or adversar-
ial data. Moreover, it can distinguish between models learnt with zero training
errors and the same dataset D but different final local optima 6* obtained, for
instance, through a randomised optimisation.

A simple example of complexity measure for a parametric hypothesis 7y is
the feature dimension of the parameter M(fy, D) = dj or its £y-norm M( fy, D)
= ||#]|2. More generally, complexity measures can also be defined for a whole
hypothesis set F as M(F, D). Various examples of such complexity measures
exist, such as the fundamental Vapnik-Chervonenkis (VC) dimension in binary clas-
sification and the Rademacher complexity M(f, D) = Rad(F) = Rad(f) for any
f € F that measures the degree to which a hypothesis set F correlates with
random noise, in a larger scope than classification (Mohri, Rostamizadeh, and
Talwalkar ).

Given an algorithm A, one can wonder if it is able to return a hypothesis
f € F from a dataset D of size mp such that the generalisation error J(f) is
close to the optimal generalisation error ming.» J(f’). This is the goal of the
Probably Approximately Correct (PAC) learning framework (Valiant ) which is
stated below for the sake of exhaustiveness.

Definition 3.2.5 (PAC Learning). A hypothesis set F is PAC learnable if there exists
a learning algorithm A such that for any i, 6 > 0 and any distribution P, over the
data, there exists a sample size mg ; 5 such that running A with a given random
sample D of size mp > myx ;5 the algorithm A returns a hypothesis f € F such
that

(f)—mmJ(f)gﬁ >1-946 (3.27)

One can note how PAC learning relies on sample-complexity through the
number of samples mx ; 5.

3.2.3 Estimation

The field of statistics is vast and several important approaches have been de-
veloped creating a whole range of subfields. In this part, the problem of learn-
ing, which is an instance of statistical estimation theory, is thus categorised.
Throughout the different chapters of this thesis, different kinds of estimation
approaches belonging to different statistical paradigms are used. Hence, it is
appropriate to give concise explanations of these approaches here.

Let F be the space mentioned in Section 3.2.1 that is assumed to be a sub-
manifold of an infinite dimensional manifold (such that a notion of dimension
on this space (dim(F)) can be defined). In practice, the hypothesis space F
represents the class of candidate models that can be learnt from the data, and
the goal is to find the best procedure A to perform the learning task, i.e. to
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find the minimiser of the generalisation error .J in F or at least finding a model
close to this minimiser.

Multiple categories of estimation, depending on the nature of the hypothe-
sis space F, are commonly defined.

Parametric Estimation

In the case where the hypothesis space F is finite dimensional (dim(F) = dy <
00), the estimation problem is called parametric estimation. The usual case is
when F = © C R%. Note that any family indexed by a finite dimensional set
of parameters (e.g. (fy), o) can be seen as a parametric family. The tradition
of considering the problem of statistical estimation as the estimation of a finite
number of parameters goes back to Sir Ronald Aylmer Fisher.

Non-parametric Estimation

On the other hand, parametric models sometimes provide inaccurate repre-
sentations of the underlying statistical structure (Tsybakov ). Thus, it can
be more appropriate to consider the estimation on a functional space directly
(dim(F) = o0). In that case, the estimation problem is called non-parametric
estimation.

Frequentist Statistics

In the above presentation, the loss function considered in Definition 3.2.1 is
a function of two elements: a model (called hypothesis) f and a data point z.
Hence, the loss /(f, z) is parameterised by the input data z. Consequently, the
comparison between two models f and f’ € F is made difficult since no order-
ing, even partial, is defined. By averaging the loss over the data distribution P,
a partial ordering is defined: this is the frequentist approach.

From Definition 3.2.2, the generalisation error is the expectation of the loss
function w.r.t. the data distribution P;. The intuition behind this error measure
is the following. Suppose that some algorithm A returns a hypothesis f from
a dataset D = (Z,...,Zn,). The generalisation error averages (integrates)
over all possible points that do not necessarily belong to the dataset D, such
that the learning task (the error metric) depends only on the candidate model f
and the data distribution P;. Thus, this approach is called classical, or frequen-
tist statistical inference. The term “frequentist” appropriately stands for the fact
the unknown data distribution P; can be approximated with its empirical coun-
terpart (called empirical distribution) denoted I@Z = mLD St 65 representing

the distribution obtained from the frequencies of the data in D.

Hence, the empirical risk 3_15(]?) = LD SR U(f, Z;) approximates the generali-

m.
sation error.
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Definition 3.2.6 (Empirical Generalisation Error). The empirical generalisation
error is defined as

Ts(f) = mi Uf. Z) (3.28)
=1

o]

Qi

In this way, the frequentist school defines its elementary notion of optimal-
ity: minimising the empirical risk. PAC learning described in Section 3.2.2 is a
frequentist approach. This approach has several drawbacks, two of which are
particularly important.

First, the classical school supposes the distribution P; is somehow fixed
while the associated statistical experiments generating the data are repeatable
under the same conditions. This setting is difficult to verify in practice.

Second, the empirical distribution requires a number of samples that grows
with the dimension of the input data.*° Consequently, the frequentist approach
requires a large number of samples to be efficient.

Other arguments against the frequentist approach are given in the land-
mark book of Robert on the Bayesian view of statistics. Methodologies of
both schools are used in the work presented in this thesis. The reader inter-
ested in the frequentist approach is referred to Barra ; M. Hoffman

Bayesian Statistics

The central idea of Bayesian statistics is to consider the unknown quantity of
interest (6* in the parametric case or f* in non-parametric case) as a random
variable#': the hypothesis space F is endowed with a prior distribution (P in
the non-parametric case or Py- in the parametric case). This prior distribution
represents what is known about the hypothesis before observing the data.

This randomness shall be understood as the decision maker or agent belief
in the true value of the optimal model. Thus, a distribution Ps. is defined over
the hypothesis space F. If the hypothesis space is finite dimensional F = © C
R%, the prior distribution Py- is defined over the parameter space ©. The choice
of a prior distribution is not trivial, and a considerable part of the Bayesian
literature is dedicated to this topic.

Note that the above definition refers to the PAC-Bayesian theory, while the
classic Bayesian theory assigns a prior distribution to the data distribution P
itself. PAC-Bayesian algorithms are motivated by a desire to provide an infor-
mative prior encoding information about the expected experimental setting
but still having PAC performance guarantees over all i.i.d. settings.

4°This is known as the curse of dimensionality (Bach ).

41In Bayesian Statistics, the unknown target f* does not necessarily vary, thus the term “ran-
dom” may not be very appropriate. In probability theory, a random variable is defined as a
measurable function from a probability space to a measurable space. Hence, the possibility to
assign a value Py. (Br) to aregion Bx C F of the hypothesis space which describes how likely
the unknown model f* belongs to this region is the essential concept in Bayesian statistics.
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The reader interested in the Bayesian approach is referred to Robert
and Rousseau

Estimators

The notion of learning algorithm A is historically associated with the statistical
learning literature, while the statisticians prefer the closely related notion of es-
timator. A bit more formally, a learning algorithm A is a mapping that assigns a
hypothesis f € F to a dataset D € Z™». In fact, the term estimator generalises
this concept being a mapping that assigns any object from a dataset.

Definitic_)n 3.2.7. An estimator, or a statistic, is a (measurable*?) function of a
dataset D.

When the estimation target is an unknown function f* € F, the estimator

is denoted f and when the target is a parameter §* ¢ F = O, the estimator
is denoted 6. In those cases, where the estimator returns an element of the
hypothesis space F, the algorithm A and the estimator are equivalent. Note

that the estimators are functions of the data, thus f = f(D) and = 5(15).
Given a class of estimators, how to choose the optimal one, and what is a
notion of optimality? A basic tool is the notion of risk or loss function as defined
in Section 3.2.1 that allows comparing the performances of different estimators.
Notably, an important procedure in the Machine Learning literature is the
(stochastic) gradient descent algorithm Mandt, M. D. Hoffman, and Blei
to find the optimal estimator if the risk function is differentiable such that the
gradient of this empirical generalisation error can be computed. In the work
presented in this thesis, the gradient descent algorithm used on parametric
models is the Adam algorithm Kingma and Ba

3.2.4 Decision Theory

Statistical decision theory is concerned with the problem of making decisionsin
the presence of statistical knowledge. Classical statistics are directed towards
the use of sample information (from the data gathered) in making inference
about the unknown state of nature or system, represented by the parameter 6*.
In decision theory, this information is coupled with the system features in order
to make the best decision. In addition to the extracted information, a measure
of the decision consequences is performed through the use of a loss function.
The choice of function among a class of hypothesis class F is the decision in
the statistical learning theory. The incorporation of the loss function is due to
Abraham Wald. In economics, the loss function is called the utility function.

42This ensures a probability measure can assign a probability to the estimator potential val-
ues. Estimators are then random variables, they may have a mean and a variance.
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The other kind of information that is not extracted from the statistical ex-
periment is called prior information. This information arises from other sources
such as knowledge built on past or similar experiments. The approach of statis-
tics which seeks to use prior information and is termed as Bayesian analysis.
Bayesian analysis and Decision Theory are naturally linked, partly because of
their common use of information that does not directly result from experimen-
tal trials and partly because of theoretical ties. Note also, there is also non-
Bayesian Decision Theory and a statistical Bayesian point of view that is not
necessarily linked to Decision Theory. The book Berger is a classic refer-
ence on the subject.

The next partis devoted to the application of learning theory to control prob-
lems.

3.3 Learning-based Control

Historically, the first application of learning theory to control problems can be
traced back at least to the adaptive control theory (Astrém and Wittenmark )
which concerns the design of controllers for controlled systems that depend
on unknown quantities such as the dynamics f, the disturbances ex and ey or
any other object in the dynamics presented in (2.1)-(2.2). This definition can be
extended to the case of unknown cost functions ¢ or anything that is unknown
to the decision maker.

Rudolf Kalman (Kalman ), was one of the first to propose a kind of
learning-based control setting called “Self-optimising Control System”. Indeed,
he was already interested in building a “machine” that “adjusts itself automati-
cally to control an arbitrary dynamics process”, paving the way to the learning-
based or machine-learning control field. From his own words, “this machine
represents a new concept in the development of control systems”. Once again
Bellman pioneered the adaptive control theory in the 1960s with other great
researchers, an extended bibliography of Adaptive Control early days can be
found in Astrém and Wittenmark , p- 38 and subsequent.

3.3.1 Adapting Learning Theory to Control

Basically, Learning-based Control brings together the fields of Control Theory
presented in Chapters 2 and 3 and Learning theory presented in Section 3.2.

Several categories of learning-based control can be distinguished depend-
ing on the unknown target object to be learnt. Taking back the notation of
Section 3.2.1, the target object f € F can now represent any central object of
the control problem that have been presented.
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Strong Realisability Assumption

To simplify the exposition, all the target objects such as the policy space or the
operator spaces are supposed to be contained in the hypothesis spaces that
are considered. This means that quantities such as the optimal policy 7*, the
optimal value function J* or the true dynamics f are in the hypothesis spaces
F. Hence, those objects are learnable.

Data distribution

In learning-based control, a random data point Z may be a complete trajectory
defined in Chapter 2 such as Z = H, or Z = H,, an observed state Z = X,
control Z = U, at a given time k or any pair or combination of them with other
observed quantities (observations, inter-decision times, etc.).

Thus, the data distribution P is often the distribution of the finite or infi-
nite observed trajectory. For instance, in the discrete case the data distribution
may be P, = Py, or P; = Py_, and a similar distribution is defined in the
continuous case with the continuous time history.

Loss Function

A common natural choice for the loss function is given by /(f, Z) = #(r, Hy,)
= Zfik ve (X, Uy) where the distribution of H,, depends, of course, on the
policy 7, time, and initial state distribution.

Dynamics Learning

In the case of dynamics learning, the target object is often the true dynamics,
i.e. f = f € F. or the transition kernel f = P € F. Non-parametric estimators
of models are denoted with a hat, e.g. forPand belong also to the hypothesis
space F.

When the problem is parametric (F = ©), the associated estimators are
denoted fy« or Py for 6* € © the true parameter of the dynamics, and the
estimator of the weights is denoted 0.

The methods using dynamics estimation are called model-based methods
because they use a “model” of the dynamics to make decisions.

Policy Learning

Regarding Policy Learning, the learning target can be the optimal policy, i.e.
f = =*. If the problem is nonparametric (7* € F = II), the corresponding
estimator is denoted 7. Similarly, in the parametric case, the optimal policy -
is associated with the true parameter 6* € © and the estimator of the weights
is denoted 6.
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Value Learning

Value Learning aims at approximating the objective (a.k.a. value) function (k, ,
7) — J(k,z, 7). As above, the non-parametric estimator of the value function
is denoted J and the parametric estimator is denoted J, for 6 € ©.

3.3.2 Reinforcement Learning

Reinforcement Learning is a very large field that has been developed in the
last decades. The reader is referred to the comprehensive book of Sutton and
Barto for a detailed introduction to the field.

Definition

Throughout this thesis, Reinforcement Learning is defined as the process of
learning an optimal policy 7* € .77 from a decision performance feedback
termed reinforcement signal. In the present context, the reinforcement signal
transmitted to the decision maker (controller) in a state x € X, when a decision
u € U is taken, is given by the cost ¢(z, u).

Policy Iteration

Afundamental two-steps procedure called policy iteration is performed to learn
the optimal policy. Iteratively, the following two stages are performed in order
to obtain a new policy 7’ € @7 that performs better than the previous policy
T E .

* Policy Evaluation: The value function J( -, ) of the policy is approximated

-~

by an estimator J(-, 7).

* Policy Improvement: The policy is updated such that the new policy is bet-
ter than the previous one in terms of the objective function i.e. the new

-~ ~

policy m € @Ay is such that J(-,n") < J(-,7)

In some simple cases such as when the state and control spaces are finite (tab-
ular), the policy iteration algorithm is guaranteed to converge to the optimal
policy. Those cases rather belong to the field of Dynamic Programming. Thus,
they are not considered as proper RL settings.

In many other cases, neither the evaluation nor the improvement steps are
performed exactly. The methods thus belong to the case of Dynamic Program-
ming with Function Approximation. The policy evaluation is approximated by
the value function estimation, and the policy improvement is rarely possible in
a closed form, notably in the case of continuous control problems. Hence, Re-
inforcement Learning is defined as the application of the policy iteration proce-
dure, based on reinforcement signals, with learning algorithms to approximate
the value function and the policy.
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Value-based Methods

Value-based methods are a class of Reinforcement Learning methods that aim
at learning the value function or the Q-function of the (possibly optimal) policy.
Several ways exist to learn the value function in a supervised learning fash-
ion. The most common approaches are the Temporal Difference (TD) methods
(Tsitsiklis and Van Roy ) and the Q-learning algorithm (Watkins and Dayan
; Tsitsiklis ; Melo ). Those methods supervise the learning of the
(Q-)value function by using a target computed from some type of Bellman equa-
tion (Theorem 3.1.1).

Alternatively, the learning label can be an empirical estimate of the value
function obtained from a Monte Carlo simulation (here an empirical distribu-
tion of the controlled trajectory is derived). However, this approach is not al-
ways feasible in practice due to the high variance of the Monte Carlo estimator
and the high computational cost of the simulation (curse of the trajectory size
dimensionality).

Actor-based Methods

In this class of methods, the principal idea is to learn the policy directly from
the reinforcement signal. They are called actor-based because the policy is
sometimes called the actor in the Reinforcement Learning literature.

A common approach is to use the policy gradient theorem to update the
policy in the direction of the gradient of the objective function (R. J. Williams,
Peng, and H. Li ; Sutton, McAllester, et al. ).

Another example of actor-based class of methods is the gradient-free Pol-
icy Search approach (Sigaud and Stulp ) where the reinforcement signal is
collected to evaluate the policy performance.

Actor-Critic Methods

Actor-critic approaches (Konda and Tsitsiklis ) combine the two previous
classes of methods. This kind of procedure reduces the variance and is appre-
ciated for its computational congeniality, even though it introduces bias in the
estimation (due to bootstrapping).

A critic is a (Q-)value function estimator that is used to construct a boot-
strapped target of the cumulative cost by means of the Bellman equation (The-
orem 3.1.1). For instance, the critic J is used to constructAestimator J' of the
(Q-)value of some state X, atiteration k£ € N which reads J/'(Xy) = (X, Ux) +
wf(XkH). In this case the estimator J' is called a bootstrap estimator since
it is a function of an estimator. Moreover, the critic is called as such because
it evaluates the policy performance starting from the next state (at iteration
k + 1). This way, the estimator critics the decision taken at the current state (at
iteration k).
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Model-free vs. Model-based

One essential difference between the fields of Dynamic Programming and Rein-
forcement Learning is the access to the model of the dynamics f or equivalently,
the transition kernel P. Thus, the initial works in Reinforcement Learning were
model-free, i.e. the dynamics are unknown and algorithms are based on the
estimation of the value function or the policy from the reinforcement signal.

In the case of model-based Reinforcement Learning (Moerland et al. ),
the dynamics are approximated by an estimator for P. Then, a wide range
of methods can be used to solve the control problem. Chapter 7 is essentially
based on the ideas of a model-based Reinforcement Learning article.

Off-policy vs. On-policy

As mentioned for instance in Section 3.3.1, learning is based on some data dis-
tribution derived from the interaction of the agent with the environment (dy-
namic system). Suppose that the actual control policy 7 € o is fixed. If the
data distribution used for learning is independent of the policy 7, then the learn-
ing algorithm is said to be off-policy. Otherwise, the learning algorithm is said
to be on-policy.

Several empirical advantages and drawbacks are associated with each type
of learning. Off-policy learning is often more efficient in terms of sample com-
plexity, but it may suffer from high variance and instability. On-policy learning
is more stable but may require more samples to converge.

3.3.3 Learning-based Model Predictive Control

Model Predictive Control

As stated in the introduction of the thesis (see Section 1.3.2), Model Predictive
Control (MPC) (Grine and Pannek )is a control strategy that combines two
main ingredients: a model of the system state dynamics P and an optimisation
problem.

For each decision time k£ € N, the MPC approach consists of solving a finite-
horizon optimal control problem. Formally it defines the following policy

™PC () = u (3.29)
KMPC

st. (ugy ., Ugemee) = arg min E Z c <Xk,uk> | Xo =z (3.30)
(uo,--~,uKMPc)GUKMPCJrl k=0

where K¢ < K is the MPC planning horizon, z € X is the current state and
(X&) repo,xwee) is the state trajectory when the state transition probability is given

by the model P.
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The policy obtained with MPC on P is denoted by 7™"C. The history process
under 7MP¢ is denoted by HMPC = (HMPC), oy, it is an approximation of the opti-
mal history process (H;)rey and the random variable H¥PC is an approximation
of the optimal trajectory Hj.. The objective function under 7MP¢ is denoted by
JMPC.

When the system is partially observed, the MPC policy is computed using a
filter (see Definition 2.2.11 and Remark 2.2.17).

Fewer works have been done on the MPC with partially observed systems,
the article Copp and Hespanha and the review Findeisen et al. are
good references on this topic.

Model Learning

In Learning-based Model Predictive Control, the model of the system dynamics
is learnt from data. This means that the model P is an estimator of the true
dynamics P. Any approach from Section 3.2.3 can be used to learn the model.

This approach opposes the physics-based model predictive control where
the model is derived from the physics of the system.

Cross-Entropy Method

In this work, the MPC procedure is performed with the iCEM algorithm, an im-
proved version of the Cross Entropy Method (CEM) (Rubinstein and Kroese :
Pinneri et al. ), @ zeroth order optimisation algorithm based on Monte Carlo
estimation.

Now concrete examples of dynamical systems are presented. They range
from standard models used in control and dynamical system theory to more
complex models used in the Flow Control literature.

3.4 Example of Dynamical Systems as Discrete De-
cision Processes

3.4.1 On the Spatial Discretisation

The potentially infinite dimensional function spaces are discretised such that
X ~R¥x, Y ~RY and U ~ R%. Any function of some space is represented by
a finite-dimensional vector in the corresponding space (the finite approxima-
tion vector should represent a function by containing a rich enough collection
of its images). The simulation and numerical approximation is done according
to the standard scheme presented in Section 2.4. Such discretisation is dis-
cussed and applied in several Reinforcement Learning works (e.g. Pan et al.
; Bucci et al. ; Tallec, Blier, and Ollivier ).
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All environments start from a neighbourhood of some reference state z, €
X which can be an equilibrium of the system.#3 More precisely, the initial
state is drawn from a Gaussian distribution centred at the reference state, i.e.
Px, ~ N (z.,0%1,, ) where . > 0 is the standard deviation of the distribution.
Regarding the Navier-Stokes flows, the initial state is an arbitrary element of the
state space that belongs to the attractor of the system (the set of states that
the system tends to reach after a long time, i.e. the ergodic system behaviour).

3.4.2 Lorenz 63’ System

In the study of deterministic chaos, one of the most prominent systems is given
by the Lorenz 63’ differential equations. Those equations model the unpre-
dictable behaviour usually associated with the weather. Over the years, this
system inspired several works from the control community (Vincent and Yu
) and is given as follows for some positive 3;, i = 1,2,3 and an additive
control input:
Oy = Bilaf —xp) +uy
O} =1, (8o — ) — 2} +u} (3.31)

3_ 1,2 3,3
Owxy = x,xy — Paxy + uy

In particular, when 5, = 10, 2 = 28 and 3 = § it has chaotic solutions and
three unstable equilibria z.: for i = 1, 2, 3, which are considered as a reference
state z. for the resulting MDP.

Note there is no spatial dimension in this system, thus the state space is
finite-dimensional with X = R, dx = 3and U/ = R%, d;; = 3. The observable
operator g chosen in this work is the identity, ¢ = Id thus Y = X and the
discrete operator is implicitly obtained during Runge-Kutta 4 integration. In
the experiments, the initial reference state is set to z, = .. lllustrations of the
Lorenz system used in this work are given in Figure 3.1.

3.4.3 Kuramoto-Sivashinsky

The second dynamical system in question is the Kuramoto-Sivashinsky (KS) equa-
tion. It is a well-known unidimensional partial differential equation which ex-
hibits spatio-temporally chaotic behaviour and describes many physical set-
tings such as stability of flame fronts or reaction-diffusion systems (Cvitanovic,
Davidchack, and Siminos ). In this work, the KS equation is given for any
z € Zby

O1x4(2) = —x4(2)0.14(2) — O2wy(2) — O2ay(2) + Axs(ug)(2) (3.32)

43An equilibrium is a state where the system remains if no external forces are applied. In
the ODE case, it is a state z. € X such that F(z.) = 0 for any t € I, where F is the system
dynamics. In other words, the velocity of the system is null at the equilibrium, hence the state
remains constant and does not depend on time.
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Lorenz - uncontrolled dynamics Lorenz - controlled dynamics

I I X 10

20 —20

Figure 3.1: Trajectory of the Lorenz system ((3.31)) in this work without control (left)
and with random actuation (right). The system represented here is the one used in
this work, and the trajectory horizon is ten times greater than the one used in the
experiments. Note the initial state Xo ~ N (s, 021,) is randomly picked in the vicinity
of the equilibrium z.: which is at the centre of the left butterfly wing.

where the spatial domain is given by Z = [0, L] with periodic boundary condi-
tions (z4(z + Lx) = z4(z) forany z € Z and t € I), Aks is an actuation operator
that models actuator interactions with the system.

The observation mapping g : X — ¥ = R% models the dy spatially equidis-
tant sensors and is given, forany 1 <: < dand anyt € [0, 7], by

gi(z) = (x4, gas) 12 (3.33)

where g;,  is a Gaussian density with mean fi; € [0, L] and standard deviation
s. Thus, (fi;)1<i<a @and (s;)1<i<a, represent respectively the barycenter and scale
of the sensors. Similarly, the actuation mapping Ags : U = R — X is given,
forany 1 <i <dyandanyt € [0,T], by

du

Axs(u)(2) =Y " wlhy, 5(2) (3.34)

Jj=1

forany z € Z, u € U where h, , is a Gaussian function with mean f; € [0, Ly]
and standard deviation s.

Here, the control u = (u/)i<;<4, is vector valued and each coordinate repre-
sents the intensity of the actuation at a given location fi;. The role of Aks is to
map those intensities to the system state space X.

This construction is inspired by Bucci et al. and in the same fashion, the
spatial domain space is chosen with Ly = 22. In this setting, the dynamics have
4 unstable equilibria z.: (z) for i = 0, 1,2, 3 (spatially dependent on Z = [0, L]
and time independent functions) which are considered as reference state x.
for the resulting PO-MDP. Especially, z.:(2) = 0 is the constant, null function
on the spatial domain.
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KS - uncontrolled KS - controlled
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Figure 3.2: Trajectory of the Kuramoto-Sivashinsky system from (3.32) without control
(left) and with random actuation (right). The system represented here is the one used
in this work, and the trajectory horizon is ten times greater than the one used in the
experiments. Note the initial state Xo ~ N (x¢;, 021,) is randomly picked in the vicinity
of the equilibrium z; (2)

Indeed, in this setting the system shares some interesting properties found in
the Navier-Stokes equations, which is a more realistic and practical but compu-
tationally expensive model of fluid dynamics (Viquerat et al. 2022).

Finally, all Banach spaces X, ) and U are discretised, with dx = 64, dy = 8
and dy = 8 where the sensors and actuators are equidistantly distributed in the
spatial domain. In the experiments, the initial reference state is set to . = ;.
The equation being stiff, a particular method (Cox and Matthews 2002) is used
to proceed to the integration of the PDE. Notably, the periodic boundary condi-
tions allow using the Fourier transform to compute the spatial derivatives. The
resulting dynamical system is illustrated in Figure 3.2.

3.4.4 Pendulum

A simple benchmark problem in control theory is the pendulum (Khalil 2002).
The dynamics of the pendulum are described by the following ordinary differ-
ential equation:
O = a?

: 1 (3-35)
Oy} = —“;]—: sin(z}) + m—Put
where z; is the angle of the pendulum with respect to the vertical axis, =7 is the
angular velocity of the pendulum, u, is the control input, gp is the acceleration
due to gravity, lp is the length of the pendulum, and mp is the mass of the pen-

dulum. In the experiments, the parameters are set to the Gym default values
12
gp = 30.0, lp = 2.0and mp =

P
3.
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In general, the control objective is to stabilise the pendulum in the upright
position. The control input is bounded with u; € [—ap, ap] for some ap > 0 and
any t € I. The pendulum has two equilibria z.; = (0,0) and z.; = (7, 0) which
is unstable. The initial reference state is set to x. = z.:. The state space is
X = R%, dy = 2 and the control space isi{ = R%, d;; = 1. The observable
operator g chosen is the identity, g = Id thus ) = X and the discrete operator
is implicitly obtained with Euler integration.

The reader is referred to Towers et al. for a more detailed description
of the inverted pendulum problem and its practical implementation.

3.4.5 Van der Pol Oscillator

A classical equation of nonlinear dynamics is the Van der Pol oscillator (Khalil
). This system was originally introduced by the Dutch physicist Van der Pol
to study oscillations in vacuum tube circuits. Then, it became a fundamental
example in nonlinear oscillation theory (Atay ), hosting a large quantity of
interesting dynamical behaviours.
The equation is given by

Oy = 27 + uf 6
12 = cvop(1 — (})?)a — o} + 0 (230
where z} is the position of the oscillator, 22 is the velocity of the oscillator, eypp >
0 is a parameter that controls the nonlinearity of the system.

The only equilibrium of the system is the origin z.. = (0, 0). Otherwise, all so-
lutions are periodic, and the system exhibits limit cycle behaviour. The control
input is bounded by u; € [—aypp, aypp] for some aypp > 0. In the experiments,
the parameter is set to eypp = 1.5, ayvpp = 1.0.

The state space is finite-dimensional with X = R, dy = 2 and U = R%,
dy = 2. The observation operator is the identity, ¢ = Id thus Y = X and the
discrete-time operator is implicitly obtained with the Dormand-Prince 5 integra-
tion method (Hairer, Narsett, and Wanner ) from the torchdde library (Mon-
sel et al. ).

3.4.6 Mackey-Glass

The Mackey-Glass equation is a representative instance of delay-induced chaos.
Originally, it was introduced in M. C. Mackey and Leon Glass to model the
dynamics of circulating blood cells in the human body. The equation is a nonlin-
ear ordinary differential equation that describes the evolution of a monitored
variable. The value of a state variable is sensed, and appropriate changes are
made in the production (or decay) rates of blood cell concentration. A delayed
state term models the time lag between sensing and response. The delayed
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differential dynamics read

Oy = 5MGH1}_TZ(M$X — IMGTt + Ut (3.37)
where Sya, Yme, @and ny are positive parameters. The time delay 7x is a positive
constant such thatt — 7x € I = [to,T] forany t € I. The control input u is a
bounded function of time and is absent in the original formulation.

In the dynamical system literature, this kind of equation is said to belong
to the class of feedback (delay) systems as the delayed state is fed back into
the dynamics. Given the parameter values, the system exhibits multiple attrac-
tors such as fixed points, periodic orbit, and chaotic attractors (Kiss and Rost

). Because of the practical difficulties induced by the stiffness of the equa-
tion when choosing a chaotic parameter regime, a configuration exhibiting a
periodic orbit is chosen. More precisely, the parameters are set to fus = 2.0,
e = 1.0, nyg = 8.0. This dynamics possesses two equilibria z.; = 0 and
rer > 0. The time delay is set to 7x = 1.0. Even though the complexity of the
system does not reach the chaotic regime, the essential property of interest is
the delayed feedback.

Note there is no spatial dimension in this system, thus the state space is
finite-dimensional with X = R4, dx = 1 and U = [—awg, amg), for some ayg >
0. Then, dy = 1. The observable operator g chosen is the identity, g = Id thus
Y = X and the discrete operator is implicitly obtained with the Runge-Kutta 4
DDE solver from the torchdde library (Monsel et al. ). In the experiments,
the initial reference state is set to z, = Ter.

For a thorough description and historical notes on the reasoning behind the
construction of the Mackey-Glass equation, the reader is referred to L. Glass
and M. Mackey

3.4.7 Navier-Stokes 2-Dimensional Flow

In the following example, a particular case of the Navier-Stokes equations in-
troduced earlier in Example 2.13 for numerical simulations is presented.

Example 3.4.1 (Adimensional Navier-Stokes). Some fundamental system in fluid
dynamics is governed by the Navier-Stokes equation. Let the velocity field be de-
noted as (x.(z1, 22) )icr, and the pressure field as (p.(z1, 22))ter, for any (z1,z2) €
Zns C R? where Zys is the spatial domain. The adimensionalised Navier-Stokes
equation reads:

1
ot + (2, V) = —=Vp + ﬁAl’t, (3.38)

foranyt € I, where the same notation as in Example 2.13 is used.

The velocity field x = (x', z?) is adimensionalised with respect to a characteristic
velocity U, while the spatial coordinates (z1, z2) € Zys are scaled with a character-
istic length Lys that generally depends on the spatial domain (e.g. physical object
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length). The Reynolds number Re is defined as:

UL
Re — NS7

UNs

where vys is the kinematic viscosity. This number is a parameter that controls the
“complexity” of the flow and helps to predict fluid flow patterns. At low Reynolds
numbers, flows tend to be dominated by laminar (constant streamlines) flow, while
at high Reynolds numbers, flows tend to be turbulent.

The flow incompressibility hypothesis is made to simplify the problem. This hy-
pothesis is expressed by the divergence-free condition:

div(z,) =0 (3.39)

foranyt € I, where div is the divergence operator (Chorin and Marsden ).

For this form of the equation, boundary conditions also play a crucial role since
they notably define the geometry of the problem. Importantly, all control inputs
for the next examples are embedded in the boundary conditions. For instance, a
blowing or suction strategy at a specific location in the spatial domain can be mod-
elled by some specific boundary conditions. See Holmes et al. for a general
description and the references attached to the particular flows below.

The flow control interface is managed by Hydrogym (Paehler et al. )
which is built on top of Firedrake (Ham et al. ), an automated system for the
solution of partial differential equations using the finite element method (FEM)
(Allaire ) and the Unified Form Language (UFL) (Alnaes et al. ) from the
FENICS project (Baratta et al. ). The flow is integrated in time with the semi-
implicit backward differentiation formula (Semi-implicit BDF) method (Forti and
Dede ). Thus, the exact implementation of the flows is available at the fol-
lowing address: https://github.com/dynamicslab/hydrogym/tree/main.

In the case of Navier-Stokes flows, any system state x € X is a vector field.
Then, the state space X is the space of vector fields on the corresponding spa-
tial domain Zys. Those large state spaces (infinite dimensional) are numerically
discretised with a finite element approach. Moreover, measurements are taken
at discrete locations in the spatial domain, leading to a finite-dimensional ob-
servation space ) = R% with dy € N*.

Now the three Navier-Stokes benchmark problems are presented in the fol-
lowing paragraphs.

Cylinder Flow

The cylinder flow is a classical benchmark problem in fluid dynamics. It consists
of a two-dimensional flow around a circular cylinder in a uniform stream. The
characteristic length Lys is the diameter of the cylinder here.

Above a critical Reynolds Re ~ 50, the uncontrolled flow is linearly unstable
and eventually reaches a post-transient state of periodic vortex shedding, the
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-2 0 2 4 6 8

Figure 3.3: lllustration of the cylinder flow problem. Shown here is the velocity (vector)
field of the flow around a circular cylinder at Reynolds Re = 100.

well-known von Karman vortex street. From a flow control perspective, this
is a benchmark problem in stabilisation and drag reduction. Generally, the
objective is to reduce the drag force (less commonly, the lift force) acting on
the cylinder. This setup incorporate sufficient challenges for control strategies,
such as the nonlinearity of the flow and the actuation through partially observ-
able measurements.

Two measurements (dy = 2) are extracted from the flow: the lift and drag
coefficients acting on the cylinder. The flow actuation is performed by two jets
normal to the cylinder wall relative to the flow direction. Mass flow rates repre-
senting blowing or suction on the cylinder wall are injected, following Rabault
etal. . Hence, dy = 1 since the actuation intensity of one jet is equal to the
opposite of the other. The control space U is symmetrical and bounded by the
maximum actuation intensity which is specified by the user.

Complementary to the Hydrogym interface, the reader can refer to Sipp and
Lebedev for a detailed description of the uncontrolled flow and Rabault
et al. for the associated control problem.

Fluidic Pinball

The pinball flow extends the cylinder flow by adding two additional cylinders in
the wake of the main cylinder. Originally, this flow was introduced for testing
flow control laws with low computational cost, while being physically complex
enough to host a range of interacting frequencies Deng et al. . Thisis arela-
tively new benchmark for multiple inputs-multiple outputs nonlinear flow con-
trol. This configuration exhibits a large range of flow behaviours, from steady
state to chaotic dynamics.

Similarly to the cylinder flow, the pinball flow is characterised by the lift and
drag coefficients acting on the three cylinders. The characteristic length Lys
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Figure 3.4: lllustration of the fluidic pinball problem. Shown here is the velocity (vector)
field of the flow around a pinball at Reynolds Re = 130.

is the diameter of any cylinder. However, the actuation is performed by rotat-
ing the cylinders around their axis. Consequently, the control space U is the
bounded space of rotations of the cylinders, and the control dimension dy = 3
is the number of cylinders. The measurements are taken at the same locations
as the cylinder flow, leading to dy =2 x 3 = 6.

Complementary to the Hydrogym interface, the reader can refer to Deng et
al. for a detailed description of the uncontrolled flow and Cornejo Maceda
etal. for the associated control problem. See Peitz, Otto, and Rowley
for a recent application of the Koopman operator theory to control the fluidic
pinball.

Cavity Flow

Another particular flow which exhibits a rich variety of behaviours is the open
Cavity Flow. This is a benchmark of commonly called separated fluid flow.

From Barbagallo, Schmid, and Huerre : “This type of flow exhibits a re-
circulating component (confined geometrically to the cavity) as well as a strong
shear layer that forms at the top of the cavity and, for sufficiently high Reynolds
number, becomes unstable and settles into a characteristic periodic motion.”

A blowing and suction strategy is applied to the cavity flow control prob-
lem. The characteristic length Lys is the depth of the cavity here. The sensor
measurement is located at the top-right corner of the cavity. The actuation is
performed by a jet at the top-left corner (upstream edge) of the cavity. Con-
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Figure 3.5: lllustration of the cavity flow problem. Shown here is the velocity (vector)
field of the flow around a square cavity at Reynolds Re = 7500.

cretely, the control input is the intensity of the jet, and the control space U is
the bounded space of the jet intensity. The control dimension dy = 1 is the
number of actuators. The observation space ) is the set of wall-normal shear
stress measurements evaluated on a neighbourhood of at the top-right corner
of the cavity (sensor location). Shear stress is critical in understanding drag
forces on surfaces.

Complementary to the Hydrogym interface, the exact configuration with ge-
ometric and numerical details is fully described in Sipp and Lebedev 2007 and
the control setup is described in Barbagallo, Schmid, and Huerre 2000.

3.5 Conclusion

This chapter introduced the discrete-time version of the controlled process and
its associated optimality problem, which is widely used in the Learning-Based
Control literature.

First of all, the general discrete time decision process was defined (Section
3.1) together with the discrete-time version of Dynamic Programming (Section
3.1.4). The Learning Theory (Section 3.2) was then introduced in a sufficient gen-
erality to encompass the range of problems encountered in this thesis. Then,
Learning-based Control was introduced (Section 3.3) as the application of esti-
mation and learning techniques to the optimal control problem.

Multiple important concepts and paradigms that are used throughout the
thesis were presented, such as the policy iteration procedure or Model Predic-
tive Control.

Finally, the chapter concluded with a presentation of the several controlled
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dynamics that are of interest in the field of control of Dynamical Systems (Sec-
tion 3.4).
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4 Evidence on the Regularisation
Properties of Maximum Entropy
Reinforcement Learning

This chapter is an attempt to address the robustness challenge discussed in the
introduction of the thesis (Section 1.4.1). Here, robustness to white noise is con-
sidered in the context of Reinforcement Learning and some empirical evidence
is provided to support the hypothesis that Maximum Entropy Reinforcement
Learning policies are more robust than their non-regularised counterparts.

This work led to the publication of a paper on the proceedings of the 7t
International Conference in Optimization and Learning (OLA24) in Dubrovnik
(Hosseinkhan Boucher, Semeraro, and Mathelin ).

4.1 Introduction

Maximum Entropy Reinforcement Learning (R. J. Williams, Peng, and H. Li )
aims to solve the problem of learning a policy which optimises a chosen utility
criterion while promoting the entropy of the policy. The standard way to ac-
count for the constraint is to add a Lagrangian term to the objective function.
This entropy-augmented objective is commonly referred to as the soft objec-
tive.

There are multiple advantages in solving the soft objective over the stan-
dard objective. For instance, favouring stochastic policies over deterministic
ones allows learning multi-modal distributions (Haarnoja, Tang, et al. ). In
addition, agent stochasticity is a suitable way to deal with uncertainty induced
by Partially Observable Markov Decision Processes (PO-MDP). Indeed, there are
PO-MDP such that the best stochastic adapted policy can be arbitrarily better
than the best deterministic adapted4* policy (Sigaud and Buffet ).
Furthermore, several important works highlight both the theoretical and exper-

44|n this context, the term “stochastic adapted policy” is a conditional distribution on the con-
trol space U given the observation space Y since this type of policy is “adapted” from Markovian
policies in fully observable MDPs.
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imental robustness of those policies under noisy dynamics and rewards (Eysen-
bach and Levine ).

Related to the latter notion of robustness, the maximum-entropy principle
exhibits non-trivial generalisation capabilities, which are desired in real-world
applications (Haarnoja, A. Zhou, Abbeel, et al. ).

However, the reasons for such robustness properties are not yet well un-
derstood. Thus, further investigations are needed to grasp the potential of
the approach and to design endowed algorithms. A clear connection between
Maximume-Entropy RL and their robustness properties is important and intrigu-
ing.

Meanwhile, recent work in the deep learning community discusses how
some complexity measures on the neural network model are related to gener-
alisation and explains typically observed phenomena (Neyshabur, Bhojanapalli,
etal. ). In fact, these complexity measures are derived from the learnt mo-
del, they bound the PAC-Bayes generalisation error, and are meant to identify
which of the local minima generalise well.

As a matter of fact, a relatively recent trend in statistical learning suggests
that generalisation is not only favoured by the regularisation techniques (e.g.
dropout) but mainly because of the flatness of the local minima (Hochreiter and
Schmidhuber ; Dinh et al. ; Keskar et al. ). The reasons for such
regularity properties remain an open problem. Thiswork aims to address these
points in the context of Reinforcement Learning, and addresses the following
questions:

What is the bias introduced by entropy regularisation? Are the aforementioned
complexity measures also related to the robustness of the learnt solutions in the
context of Reinforcement Learning?

In that respect, by defining a notion of robustness against noisy contami-
nation of the observable, a study on the impact of the entropy regularisation
on the robustness of the learnt policies is first conducted. After explaining the
rationale behind the choice of the complexity measures, a numerical study is
performed to validate the hypothesis that some measures of complexity are
good robustness predictors. Finally, a link between the entropy regularisation
and the flatness of the local minima is treated through the information geom-
etry notion of Fisher Information.

The chapter is organised as follows. Section 4.2 introduces the background
and related work, Section 4.3 presents the problem setting. Section 4.4 is the
core contribution of this chapter. This section introduces the rationale behind
the studied complexity measures from a learning theory perspective, as well
as their expected relation to robustness. Lastly, Section 4.5 presents the ex-
periments related to the policy robustness as well as their complexity, while
Section 4.6 examines the results obtained. Finally, Section 4.8 concludes the
chapter.
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4.2 Related work

Maximum Entropy Policy Optimisation In Haarnoja, A. Zhou, Abbeel, et
al. , the generalisation capabilities of entropy-based policies are observed
where multimodal policies lead to optimal solutions. It is suggested that maxi-
mum entropy solutions aim to learn all the possible ways to solve a task. Hence,
transfer learning towards more challenging objectives is made easier, as it is
demonstrated in their experiment. This study investigates the impact of adopt-
ing policies with greater randomness on their robustness. The impact of the
entropy regularisation on the loss landscape has been recently studied in (Z.
Ahmed et al. ). They provide experimental evidence about the smooth-
ing effect of entropy on the optimisation landscape. The present study aims
specifically to answer the question in Section 3.2.4 of their paper: Why do high
entropy policies learn better final solutions? This work extends their results from
a complexity measure point of view. Recently, (Neu, Jonsson, and Gomez ;
Derman, Geist, and Mannor ) studied the equivalence between robustness
and entropy regularisation on regularised MDP.

Flat minima and Regularity The notion of local minima flatness was first in-
troduced in the context of supervised learning by Hochreiter and Schmidhuber

through the Gibbs formalism (Haussler and Opper ). Progressively,
different authors stated the concept with geometric tools such as first order
(gradient) or second order (Hessian) regularity measures (Zhao, Zhang, and Hu

; Keskar et al. ; Sagun, Bottou, and LeCun ; Yoshida and Miyato
; Dinh et al. ). In a similar fashion, Chaudhari et al. uses the con-
cept of local entropy to smooth the objective function.
In the scope of Reinforcement Learning, Z. Ahmed et al. observed that flat

minima characterise maximum entropy solutions, and entropy regularisation
has a smoothing effect on the loss landscape, reducing the number of local
optima. A central objective of this present study is to investigate this latter
property further and relate it to the field of research on robust optimisation.
Lastly, among the few recent studies on the learning and optimisation aspects
of RL, Gogianu et al. shows how a well-chosen regularisation can be very
effective for deep RL. Indeed, they explain that constraining the Lipschitz con-
stant of only one neural network layer is enough to compete with state-of-the-
art performances on a standard benchmark.

Robust Reinforcement Learning A branch of research related to this work is
the study of robustness with respect to the uncertainty of the dynamics, namely
Robust Reinforcement Learning (Robust RL), which dates back to the 1970's (Satia
and Lave ). Correspondingly, in the field of control theory, echoes the no-
tion of robust control and especially H,, control (K. Zhou, J.C. Doyle, and Glover

), which also appeared in the mid-1970s after observing Linear Quadratic
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Regulator (LQR) solutions are very sensitive to perturbations while not giving
consistent enough guarantees (J. Doyle ).

More specifically, the Robust RL paradigm aims to control the dynamics in the
worst-case scenario, i.e. to optimise the minimal performance for a given ob-
jective function over a set of possible dynamics through a min-max problem
formulation. This set is often called ambiguity set in the literature. It is defined
as a region in the space of dynamics close enough w.r.t. to some divergence
measure, such as the relative entropy (Nilim and Ghaoui ). Closer to this
work, the recent paper from Eysenbach and Levine shows theoretically
how Maximum-Entropy RL policies are inherently robust to a certain class of
dynamics of fully observed MDP. The finding of their article might still hold in
the partially observable setting as any PO-MDP can be cast as fully observed
MDP with a larger state-space of probability measures (Onésimo Hernandez-
Lerma and Lasserre ), provided the ambiguity set is adapted to a more
complicated space.

4.3 Problem Setup and Background

4.3.1 Partially Observable Markov Decision Process with
Gaussian noise

First, the stochastic control problem when noisy observations are available to
the agent is formulated. The study focuses on Partially Observable Markov Deci-
sion Processes (PO-MDP) with Gaussian noise of the form (M. P. Deisenroth and
Peters ):
X1 = F(Xk, Uk)
Yk = G(Xk)+6y, €y NN(O,O‘%Id)

with X, € X, U, e Uand Y, € Y forany k € N, where X, i/ and ) are respec-
tively the corresponding state, action, and observation spaces. The initial state
starts from a reference state x¥ on which centred Gaussian noise with diagonal
covariance 021, is additively applied, X, ~ N (z*, 021,;). Associated with the dy-
namics, an instantaneous cost function ¢ : X x Y — R, is also given to define
the control model.

In the context of this chapter, a policy = is a transition kernel on U/ given ),
i.e. a distribution on actions conditioned on observations. This kind of policy
is commonly used in literature but can be very poor in the partially observable
setting where information is missing. Together, a control model, a policy 7, and
an initial distribution Py, on & define a stochastic process with distribution
P (Proposition 2.3.1) where the superscript ey highlights the dependency on
the observation noise ¢y. Similarly, one denotes by P™ the distribution of the
process when the noise is zero almost-surely, i.e. P™ = P™%, More details about
the PO-MDP control problem can be found in Onésimo Hernandez-Lerma and

(4.1)
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Lasserre ; Cassandra
Here, the maximum-entropy control problem is to find a policy #* which
minimises the following performance criterion

K

> e (X Un)

k=0

K

Jrer = B — B | (| Xk>>] @2

k=0

where K € N is a given time horizon, E™* denotes the expectation under
the probability measure P, H denotes the differential entropy (Cover and
Thomas ) and o’ is a time-dependent weighting parameter that evolves
over training time m < mp = |D| with |D| being the total number of times the
agent interacts with the system such that all observations used by the learning
algorithm form the dataset D at the end of the training procedure (when mp
environment interactions are done).

In the %, = 0 case, J7* is denoted J™ . Here, the quantity J™ is called the
value function or, more generally, /oss (see also Section 3.1.4).4°

Moreover, the performance gap for dynamics with noisy and noiseless observ-
ables will be considered in the sequel. In this context, the (rate of) excess risk
under noise is defined as the difference between the loss under noisy dynamics
and the loss under noiseless dynamics:

Definition 4.3.1 (Excess Risk Under Noise). The excess risk under noise of a policy
m for a PO-MDP with dynamics given by Eq. (4.1) is defined as:

K

> e (X Uy)

k=0

K
Z’ch (X%, Ur)

k=0

Rﬂ' — Emey _FE~ —_ JTI',EY o J7T (43)

Similarly, the rate of excess risk under noise is defined as:

_ Jmey 7 _ R™

R _R
Jr JT

(4.4)

Note that in the above definition, expectations are taken with respect to
the probability measure P™< and P™ respectively. The rate of excess risk un-
der noise represents the performance degradation after noise introduction in
value function units. In the sequel, arguments to heuristically derive complex-
ity measures will be developed, allowing to predict the excess risk under noise
and provide numerical evidence showing maximum-entropy policies are more
robust regarding this metric. Hence, maximume-entropy policies implicitly learn
a robust control policy in the sense of Definition 4.3.1.

In the next section, some concepts of statistical learning theory are intro-
duced. Then, complexity measures will be defined to quantify the regularisa-
tion power of the maximum-entropy objective of Eq. (4.2).

45This notation is more convenient than the one used in Chapter 3 when the context is clear.
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4.4 Complexity Measures and Robustness

4.4.1 Complexity Measures

The principal objective of statistical learning is to provide bounds on the gener-
alisation error, so-called generalisation bounds. In the following, it is assumed
that an algorithm A returns a hypothesis 7 € F from a dataset D. Note that
the dataset D is random and the algorithm A is a randomised algorithm.

As the hypothesis set F typically used in machine learning is infinite, a prac-
tical way to quantify the generalisation ability of such a set must be found. This
quantification is done by introducing complexity measures, enabling the deriva-
tion of generalisation bounds.

Definition 4.4.1 (Complexity measure). A complexity measure is a mapping M :
F — R, that maps a hypothesis to a positive real number.

According to Neyshabur, Bhojanapalli, et al. from which this formalism
is inspired, an appropriate complexity measure satisfies several properties. In
the case of parametric models 7y € F(©) with § € © C R?, it should increase
with the dimension b of the parameter space © as well as being able to identify
when the dataset D contains totally random, spurious or adversarial data. As
a result, finding good complexity measures M allows the quantification of the
generalisation ability of a hypothesis set F or a model = and an algorithm A.

4.4.2 Complexity measures for PO-MDP with Gaussian Noise

This work studies heuristics about generalisation bounds on the optimal excess
risk under noise from Definition 4.3.1when the optimal policy my- is learnt with
an algorithm A on the non-noisy objective J™, where o, = 0 for any m.

Definition 4.4.2 ((Rate of) Excess Risk Under Noise Bound). Given an optimal
policy ©* learnt with an algorithm A on the non-noisy objective J™, the optimal
excess risk under noise bound is a real-valued mapping ¢ such that

R™ < o(M(x*, D), mp, 1, 0) (4.5)

and o is increasing with the complexity measure M and the sample complexity mp.
The definition is similar to the rate of excess risk under noise bound where R™ is
used instead of R™ .

Hence, by considering a learning algorithm 4 with a parameterised family
given by F(0) = (mg)sco. © C R, such that § = (6, 6,,) with a Gaussian policy
mo(- | «) ~ N(pg,(z), diag(b,,)), x € X, - where iy, is a shallow multi-layer
feed-forward neural network (with depth-size [ = 2, width w = 64 neurons,
weights matrix (9;)5@) and diag(0,, ) is a diagonal matrix of dimension dy =
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dim (i) parameterising the variance#® — to learn the optimal policy 7+, multiple
complexity measures M are defined and details on their underlying rationale
are given below.

Norm based complexity measures

First, the so-called norm-based complexity measures are functions of the norm
of some subset of the parameters of the model. For instance, a common norm-
based measure calculates the product of the operator norms of the neural net-
work linear layers. The measures are commonly used in the statistical learning
theory literature to derive bounds on the generalisation gap, especially in the
context of neural networks (Neyshabur, Tomioka, and Srebro ; Golowich,
Rakhlin, and Shamir ; Miyato et al. ).
In fact, the product of the linear layers norm of a standard class of multi-layer
neural networks (including Convolutional Neural Networks) serves as an upper
bound on the often intractable Lipschitz constant of the network (Miyato et al.

). Thus, controlling the linear layers weights magnitude increases the reg-
ularity of the model.

Consequently, the following complexity measures are defined:

* M(mp, D) = [|0ll,
* M(mg, D) = II._, |6}, ||, where ¢/, is the i*" layer of the network i,

In this context || - ||, with p = 1, 2, oo denotes the p-operator norm while p = F'
denotes the Frobenius norm, which is discarded for the first case of the full
parameters vector 6, (since Frobenius norm is defined for matrix).

Flatness based complexity measures

On the other hand, another measure of complexity is given by the flatness
of the optimisation local minimum (see Section 4.2 for a brief overview). As
McAllester ; Neyshabur, Bhojanapalli, et al. have pointed out, the gen-
eralisation ability of a parametric solution is controlled by two key components
in the context of supervised learning: the norm of the parameter vector and its
flatness w.r.t. to the objective function.

One might wonder if a similar robustness property still holds in the setting
of Reinforcement Learning. In this manner, complexity measures quantifying
the flatness of the solution are needed. Concretely, the interest lies in the flat-
ness of the local minima of the objective function J”™. As stated earlier, there
are several ways to quantify the flatness of a solution with metrics derived from
the gradient or curvature of the loss function at the local optimum, such as the

46Note this choice of state-independent policy variance is inspired by Z. Ahmed et al.
and simplifies the problem.
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Hessian's largest eigenvalue—otherwise spectral norm (Keskar et al. ) or
the trace of Hessian (Dinh et al. ).

Moreover, as discussed in Section 4.2, Z. Ahmed et al. observed that
maximum entropy solutions are characterised by flat minima while entropy reg-
ularisation has a smoothing effect on the loss landscape. Hence, a central ob-
jective of this present study is to investigate this latter property further and relate it
to the robustness aspect of the resulting policies. However, instead of dealing di-
rectly with the Hessian of the objective J™ this work proposes a measure based
on the conditional Fisher Information Z of the policy due to its link with a notion
of model regularity in the parameter space.

Definition 4.4.3 (Conditional Fisher Information Matrix). Let x € X and 7y a
policy identified by its conditional density for a parameter § € © C R® and suppose
p Is a distribution over X. The conditional Fisher Information Matrix of the vector 6
is defined under some regularity conditions as

Z(0) = — EX~» Ut [V log me(U | X)), (4.6)
where V3 denotes the Hessian matrix evaluated at 6.

Note that the distribution over states p is arbitrary and can be chosen as the
discounted state visitation measure p™ induced by the policy 7 (A. Agarwal, Jiang,
and Kakade ) or the stationary distribution of the induced Markov process
if the policy is Markovian and the MDP ergodic#’ as it is done in Kakade

As a matter of fact, it has already been mentioned in the early works of
policy optimisation (Kakade ) that this quantity Z might be related to the
Hessian of the objective function. Indeed, the Hessian matrix of the standard

objective function reads (see Shen et al. for a proof):
K . .
Vi =E" | > (X, Uy) (7 +115) | (4.7)
k,i,j=0

where the second order quantities (matrix valued) are given by

17 = Vylog e (Ui | X;) Vlogmy (U; | X;)" (4.8)
1T, == Vj [log 7o (U; | X;)] (4.9)

As suggested by the author mentioned above (S. Kakade), Eq. (4.7) might be
related to Z although being weighted by the cost ¢. Indeed, the Hessian of the
state-conditional log-likelihoods (V2 log 7y on the rightmost part of the expec-
tation of Eq. (4.7)) belongs to the objective-function Hessian VJ™ while the
Fisher Information Z () is an average of the Hessian of the policy log-likelihood.

47With these choices, the following holds: Er"(@®)m(dulz) — |7 yp to taking the expectation
w.r.t. the state-control space (no subscript under X and U) or the trajectory space (with sub-
scripts such as X, and Uy, as trajectory coordinate) (A. Agarwal, Jiang, and Kakade ).
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In any case, the conditional FIM measures the regularity of a critical compo-
nent of the objective to be minimised. Thus, the trace of the conditional FIM of
the mean actor network parameter 6, is suggested as a complexity measure

+ M(my, D) = Tr(Z (6,)) = Tr(— EX~"0~m¥) 93 log my(U | X))).

Moreover, in the context of classification, a link between the degree of stochas-
ticity of optimisation gradients (leading to flatter minima (Mulayoff and Michaeli
; Xie, Sato, and Sugiyama )) and the FIM trace during training has re-
cently been revealed in Jastrzebski et al. . Magnitudes of the FIM eigen-
values may be related to loss flatness and norm-based capacity measures to
generalisation ability (Karakida, Akaho, and Amari ) in deep learning.

4.5 Experiments

4.5.1 Robustness under noise of Maximum Entropy Policies

The first hypothesis is that maximum entropy policies are more robust to noise
than those trained without entropy regularisation (which plays the role of con-
trol experiments). Consequently, the robustness of the controlled policy my- is
compared with the robustness of the maximum entropy policy wgf for different
temperature evolutions o* = (0%,)o<m<mp-

In this view, and since inter-algorithm comparisons are characterised by
high uncertainty (Henderson et al. ; Colas, Sigaud, and Oudeyer ;R
Agarwal et al. ), only one algorithm A (Proximal Policy Optimisation (PPO)
(Schulman, Wolski, et al. )) is retained while results on multiple entropy
constraint levels o/ = (o%,)o<m<mp are examined.

In this regard, ten independent PPO models are trained for each of the
five arbitrarily chosen entropy temperatures o™ = (0! )o<m<mp, Where i €
{1,...,5}, on dynamics without observation noise, i.e. where ¢ = 0. The en-
tropy coefficients linearly decay during training, and all vanish (o*,, = 0)whenm
reaches one-fourth of the training time m,,, = | 2] in order to replicate a sort
of exploration-exploitation procedure, ensuring that all objectives J7, are the
same wheneverm > my 4, i.e. J, = J™. This choice is different but inspired by Z.
Ahmed et al. as they optimise using only the policy gradient and manipulate
the standard deviation of Gaussian policies directly, whereas, in the present ap-
proach, it is done implicitly with an adaptive entropy coefficient. An algorithm
that learns a model with a given entropy coefficient o = (o%%,)o<m<myp 1S de-
noted as A .

The chosen chaotic systems are the Lorenz (Vincent and Yu ) (with mp =

10%) and Kuramoto-Sivashinsky (KS) (Bucci et al. ) (with mp = 2-10°) controlled
differential equations. The default training hyperparameters from the library
Stable-Baselines3 (Raffin et al. ) are used.
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4.5.2 Robustness against Complexity Measures

So far, three separate analyses on the 5 x 10 models obtained have been per-
formed on the Lorenz and Kuramoto-Sivashinsky (KS) controlled differential equa-
tions.

First, as mentioned before, the robustness of the models for each of the cho-
sen entropy temperatures o/’ is tested against the same dynamics but now
with a noisy observable, i.e. oy > 0. Second, norm-based complexity measures
introduced in Section 4.4.2 are evaluated and compared to the generalisation
performances of the distinct algorithms 4. Third, numerical computation of
the conditional distribution of the trace of the Fisher Information Matrix given
by Eq. (4.6) is performed to test the hypothesis that this regularity measure is
an indicator of robust solutions. The state distribution p™ is naturally chosen as
the state visitation distribution induced by the policy 7. The following section
discusses the results of those experiments.

4.6 Results

This section provides numerical evidence of maximum entropy's effect on the
robustness, as defined by the Excess Risk Under Noise defined by Eq. (4.3).
Then, after quantifying robustness, the relation between the complexity mea-
sures defined in Section 4.4.2 and robustness is studied.

4.6.1 Entropy Regularisation induces noise robustness

In the first place, a distributional representation4® of the rate of excess risk un-
der noise defined in Eq. (4.3) is computed for each of the 5 x 10 models obtained
with the PPO algorithm A i, i € {1,...,5} and different levels of observation
noise oy > 0.

First and foremost, the results shown in Figure 4.1 indicate that the noise
introduction to the system observable Y of KS and Lorenz leads to a global
decrease in performance, as expected.

The robustness to noise contamination of the two systems is improved by
initialising the policy optimisation procedure up to a certain intermediate en-
tropy coefficient threshold o/ > 0. Once this value is reached, two respective
behaviours are observed depending on the system. In the case of the Lorenz
dynamics, the robustness continues to improve after this entropy threshold,

48By replacing the expectation operator E with the conditional expectation E[ - | X,] in the
definition of R™ in (4.3), the quantity becomes a random variable for which the distribution
can be estimated by sampling the initial state distribution Xy ~ N'(x%, 021,). In fact, taking
the conditional expectation gives the difference of the standard value functions under P™ and
Py,
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whereas the opposite trend is observed for KS (particularly with the maximal
entropy coefficient chosen).

Hence, the sole introduction of entropy-regularisation in the objective func-
tion impacts the robustness. This behaviour difference between Lorenz and KS
might be explained by the variability of the optimisation landscapes that can be
observed with respect to the chosen underlying dynamics as underlined in Z.
Ahmed et al.
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Figure 4.1: Distributional representation of the rate of excess risk under noise R™
conditioned on the o/ used during optimisation for different initial state distribution
Xo ~ N(z}, 02Id). Each of the rows corresponds to one of the dynamical systems of
interest. Each of the columns corresponds to one of the initial state distributions of
interest. There are two non-zero fixed points (equilibria) =} for Lorenz and three for
KS. From top to bottom: KS; Lorenz.

For each box plot, three intensities oy for the observation noise ¢y are evaluated. As
expected, when the uncertainty regarding the observable Y increases through the vari-
ance oy of the observation signal noise ey, the policy performance decreases globally
(7°€7r increases). Moreover, the rate of excess risk under noise tends to decrease when
o' increases in the Lorenz case, whereas it decreases up to a certain entropy thresh-
old for KS before increasing again.
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4.6.2 Maximum entropy as a norm-based regularisation on
the policy

Norm-based complexity measures introduced in Section 4.4.2 are now evalu-
ated. For a complexity measure M to be considered significant, it should be
correlated with the robustness of the model.

Accordingly, the different norm-based measures presented in Section 4.4.2
are estimated. Figure 4.2 shows the layer-wise product norm of the policy actor
network parameters (M(my, D) = II,_, [|6/ ||,) w.r.t. to their associated entropy

coefficient o**' for all the 50 independently trained models.

Again, policies obtained with initial o** > 0 exhibit a trend toward decreas-
ing complexity measure values as o’ increases up to a certain threshold of the
entropy coefficient. Similarly to Section 4.6.1, the complexity measure contin-
ues to decrease after surpassing this threshold for the Lorenz system. On the
other hand, in the KS case, M (my, D) increases again once its entropy threshold
is reached, notably for the larger entropy coefficient.

Moreover, the measures tend to be much more concentrated when o' > 0,
especially in the case of KS (except for the higher o/*").

This may indicate that the entropy regularisation acts on the uncertainty of
the policy parameters. Likewise, similar observations can be made for the total
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Figure 4.2: Measures of complexity M(my, D) = Hézlﬂ%np with p = 1, 2, oo, F condi-
tioned on the o' used during optimisation. Each row corresponds to one of the dy-
namical systems of interest while columns represent a different norm order p. From
top to bottom: Lorenz and KS.

For the Lorenz case, the barycenters of the measures tend to decrease when o' in-
creases. Regarding KS, passing a threshold, the complexity increases with the entropy
again. In addition, the measures are much more concentrated when o**' > 0. For
p = 2, F, the separation of the measures w.r.t. the different o’** is more pronounced.
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norm of the parameters but are not introduced here for the sake of brevity.

Consequently, this experiment highlights an existing correlation between
maximum entropy regularisation and norm-based complexity measures. As
this complexity measure is linked to the Lipschitz continuity of the policy, one
might wonder if the regularity of the policy is more directly impacted. This is
the purpose of the next section.

4.6.3 Maximum entropy reduces the
average Fisher-Information

Another regularity measure is considered: the average trace of the Fisher infor-
mation (M(mg, D) = Tr(Z (0,,)) = Tr(— EX~pU~mX) [vgu log me(U | X)] ). As
discussed in 4.4.2, this quantity reflects the regularity of the policy and might
be related to the flatness of the local minima of the objective function.

Figure 4.3 shows the distribution under 7, of the trace of the state condi-
tional Fisher Information of the numerical optimal solution 0; ot for the policy

w.r.t. the o’ used during optimisation. In other words, a kernel density estima-
tor of the distribution of Tr(Z(my- w,( - | X))) when X ~ p™~ is represented.
J7Ne"

The results of this experiment suggest first, this distribution is skewed nega-
tively and has a fat right tail. This means some regions of the support of p™-
provide FIM trace with extreme positive values, meaning the regularity of the
policy may be poor in these regions of the state space.

A comparison of the distribution w.r.t. the different o™’ sheds further light on
the relation between robustness and regularity. In fact, there appears to be
a correspondence between the robustness, as indicated by the rate of excess
risk under noise R™ shown in Figure 4.1 and the concentration of the trace dis-
tribution toward larger values (i.e. more irregular policies) when the model is
less robust.

Meanwhile, under the considerations of 4.4.2 and since it is known that en-
tropy regularisation favours flat minima in RL (Z. Ahmed et al. ).these ex-
perimental results support the hypothesis of an existing relationship between
robustness, objective function flatness around the solution * and conditional
Fisher information of 6*.

For a complementary point of view, a supplementary experiment regarding
the sensitivity of the policy updates during training w.r.t. to different level of
entropy is also presented in Section 4.7.
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Figure 4.3: Distribution of the trace of the (conditional) Fisher information of the nu-
merical optimal solution 9; o for the policy w.r.t. the o' used during optimisation.

From left to right: Lorenz and KS environments. Colours: control experiment o' = 0
(black); intermediate entropy level o (blue); largest ' (red).

A skewed distribution towards (relatively) larger values is observed for all controlled
dynamical systems. Moreover, those right tails exhibit high kurtosis, especially for the
control experiment (black) and the model with the larger entropy coefficient (red) for
the KS system. Finally, solutions with intermediate entropy levels (blue) are much more
concentrated—have lower variance than the others. About Lorenz, the barycenter of
the more robust model (red) is shifted towards lower values than the others.

4.7 Complement: Weights sensitivity during train-
ing

This section is intended to provide complementary insights on the optimisation

landscape induced by the entropy coefficient o** during training from the con-

servative or trust region policy optimisation point of view (Kakade and Langford
: Schulman, Levine, et al. ).

Let (éﬁ”)mb be the sequence of weights of the policy during the training

of the modeln%(;ll’ some initial entropy coefficient o*. The conditional Kullback-
Leibler divergence between the policy identified by the parameters 0;}? and the
subsequent policy defined by the parameters G%HH is given by

m o (dulX)
e (955%7 ?ﬁl) =B [fu log (”;ﬂ”l(d_”—) Togrt,

m+

The above quantity is a measure of the divergence from the policy at time m to
the policy at time m + 1. Thus it may provide information on the local stiffness
of the optimisation landscape during training.

Figure 4.4 shows the evolution of the Kullback-Leibler divergence between
two subsequent policies during training for the Lorenz and KS controlled dif-
ferential equations. Regarding the Lorenz system, the maximal divergence is
reached for the optimisation performed with the two lowest /" while increas-

ing entropy seems to slightly reduce the divergence. On the other hand, the

(du | X)|.
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highest divergence values observed for the KS system are reached for o/’ = 0
and the maximal entropy coefficient. This observation is coherent with the re-
sults of the previous sections and suggests that the entropy coefficient o’ im-
pacts the optimisation landscape during training.

Interesting questions regarding the optimisation landscape and its link with
the Fisher Information (through the point of view of Information Geometry
(Amari )) are raised by the results of this section but are left for future work.
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Figure 4.4: Evolution of Dy (Q,O;H, Gf‘nﬂﬂ) during training for the Lorenz and KS con-
trolled differential equations. For Lorenz, the maximal divergence is reached for the
optimisation performed with o*' = 0 and the second lowest /*. Regarding KS, the
highest divergence values are observed for o/** = 0 and the maximal entropy coeffi-
cient.

4.8 Discussion

In this study, the question of the robustness of maximum entropy policies
under noise is studied. After introducing the notion of complexity measures
from the statistical learning theory literature, numerical evidence supports the
hypothesis that maximum entropy regularisation induces robustness under
noise. Moreover, norm-based complexity measures are shown to be correlated
with the robustness of the model. Then, the average trace of the Fisher Infor-
mation is shown to be a relevant indicator of the regularity of the policy. This
suggests the existence of a link between robustness, regularity and entropy
regularisation.
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5 Increasing Information for
Model Predictive Control with
Semi Markov Decision Processes

This chapter aims at addressing the problem of the sample complexity (see
Section 1.4.1) of the learning process in the context of Learning-based Model
Predictive Control (LB-MPC). This work led to a conference paper published in
the proceedings of the 6th Annual Learning for Dynamics & Control Conference
(L4DC24) (Hosseinkhan Boucher, Douka, et al. ).

5.1 Introduction

As discussed in the introduction of this thesis (Sections 1.2 and 1.3), Machine
Learning Control (MLC) is an interdisciplinary area of statistical learning and con-
trol theory that solves model-free optimal control problems (Duriez, Brunton,
and Noack ). Among the multiple approaches of the vast field of data-
driven control, two classes have received notable attention by the ML com-
munity: Learning-Based Model Predictive Control (LB-MPC) (Hewing et al. )
and Model-Based Reinforcement Learning (MB-RL) (Abbeel, Quigley, and Ng ;
Recht : Moerland et al. ). The former refers to the combination of Mo-
del Predictive Control (MPC), an optimisation method based on a sufficiently de-
scriptive model of the system dynamics (Grine and Pannek ), and learning
methods which enable the improvement of the prediction model from recor-
ded data while possibly modelling uncertainty (Aswani et al. ; Koller et al.

). The latter combines general function approximators such as linear mod-
els (Tsitsiklis and Van Roy ), or more generally neural networks (Sutton,
McAllester, et al. ), with Dynamic Programming (DP) (R. E. Bellman ) prin-
ciples to solve the underlying optimisation problem.

Despite the recent impressive results in learning complex dynamical mod-
els (Ha and Schmidhuber ), the sample complexity of the learning process
remains a major issue in the field of data-driven control (Kakade ; G. Li
et al. , and see the references therein), in which the sample complexity is
defined as the sample size required to learn a good approximation of the tar-
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get concept (Mohri, Rostamizadeh, and Talwalkar ). For this reason, recent
works (Mehta, Char, et al. : Mehta, Paria, et al. ) in LB-MPC have fo-
cused on the design of exploration strategies based on the Information Theory
concept of Expected Information Gain (EIG) or negative Conditional Mutual Infor-
mation (CMI) (Lindley ). The resulting criterion allows for quantifying the
gain of information given by a new state-control observation on the estimated
optimal system trajectory. Hence, this tool can be used as an acquisition func-
tion to guide the exploration of the state-control space. The concept of acqui-
sition function is borrowed from the field of Bayesian Optimisation (BO). In par-
ticular, the work of Mehta, Char, et al. relies on the broader black-box BO
framework of Neiswanger, K. A. Wang, and Ermon

In a setting where the data is collected along the trajectory of the dynamical
system of interest, the diversity of the resulting dataset (which may be char-
acterised by the quantity of information) is conditioned on the subsequent
states of the system. Informally, the setting in which the sampling procedure
is constrained by the current system state may introduce information redun-
dancy if the system exhibits high auto-correlation or if the current state isin a
slowly evolving region of the state space. Indeed, as shown in Figure 5.1 (auto-
correlation from a perturbated fixed point of a controlled Lorenz 63’ system),
the auto-correlation from an initial state can be high on average for a long pe-
riod of time while the control intensity allows reducing the correlation of the
sequence of states.

Lorenz x3 autocorrelation from Xo: (Corr(Xo, Xe))kew
1.00 Control intensity

0.75 0

o NES
| ‘ Mul {WM'P Mpu il

Corr(Xo, Xx)

e | I

—-0.75

0 100 200 300 400 500
Iteration index k (with dt=0.05)

Figure 5.1: (Corr(Xo, X«))ren for the controlled Lorenz system x3 component under
multiple control intensities.

However, for dynamical systems characterised by a wide range of time sca-
les, the notion of temporal abstraction, described in the following paragraphs,
(Precup ; Machado et al. ) may play a key role in overcoming the issue
mentioned here.

Abstraction in Artificial Intelligence refers to a broad range of techniques
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in order to provide a more compact representation of the problem at hand
(Boutilier and Dearden ; Banse et al. ). In the framework of Markov
Decision Process (MDP),the work of Sutton, Precup, and Singh sheds light
on the limitation induced by standard MDP modeling: “There is no notion of
a course of action persisting over a variable period of time. [...] As a conse-
quence, conventional MDP methods are unable to take advantage of the sim-
plicities and efficiencies sometimes available at higher levels of temporal ab-
straction.”

Temporal abstraction can refer to the concept of selecting the right level of
time granularity to facilitate the description of the world model to achieve a
given task. In simpler words, in the present case, temporal abstraction is the
idea of representing and reasoning about actions and states at different time-
scales and duration.

In the present work, temporal abstraction through Semi-Markov Decision Pro-
cesses (SMDP) modeling is introduced to improve the informativeness of the se-
quential exploration of the state-control space. SMDP modeling is shown to
obtain a better sample complexity of the dynamics model estimator. This arti-
cle thus extends the previous work of Mehta, Paria, et al. by introducing
temporal abstraction to the acquisition function. The chapter is organised as
follows. Section 5.2 reviews the related works. Section 5.3 introduces the prob-
lem setting. Section 5.4 presents the hypothesis and the experimental setup
while Section 4.6 presents the results and Section 5.6 concludes the chapter.

5.2 Related Works

Information Driven Model-Based Control The foundations of the Bayesian
Experimental Design have been laid by the seminal work of Lindley where
the author presents a measure of the information provided by an experiment.
More recently, MacKay termed Expected Information Gain (EIG) a measure
of the information provided by an observation allowing, in his own terms, to
actively select particularly salient data points. In the field of LB-MPC, such a cri-
terion has been used to cherry-pick the most informative state-control pair to
learn the dynamics of the system (Mehta, Char, et al. ; Mehta, Paria, et
al. ). Their work is based on the broader Bayesian Optimisation method
of Neiswanger, K. A. Wang, and Ermon designed to optimise “blackbox”
functions. An extensive review of Bayesian Optimisation and its applications is
available in this latter paper.

Learning-Based Model Predictive Control The history of learning based mo-
delling may be traced back to the seminal work by Stratonovich in probabil-
ity theory which stimulated several contributions, notably the work of Kalman
and Bucy , that were to compose a body of work generally referred to as
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filtering theory. More recently, Kamthe and M. Deisenroth model the sys-
tem dynamics with Gaussian Processes (GP) and use MPC for data efficiency.
GPs are also used in the PILCO model (M. Deisenroth and C. Rasmussen )
which has a high influence in MB-RL. Koller et al. model the uncertainty
of the system dynamics for safe-RL. The work of Bonzanini and Mesbah
presents a stochastic LB-MPC strategy to handle this uncertainty.

Semi-Markov Decision Processes Temporal abstraction in Reinforcement
Learning was pioneered in Sutton and Precup and Sutton ; Precup
. Specifically, Sutton proposed learning a model and value function
at different levels of temporal abstraction. The actions in SMDPs take variable
amounts of time and are intended to model temporally-extended courses of ac-
tion. Recent works for continuous-time control use variants of Neural Ordinary
Differential Equations to model dynamics delays (Du, Futoma, and Doshi-Velez
; S. Holt et al. ). A classical use of SMDP is for queueing control and
equipment maintenance (Puterman ) where time-delays are prominent.

5.3 Problem Setting

5.3.1 Control Model

This work considers a control model given by the following d-dimensional dis-
crete time dynamical system X (Duflo ) on a probability space (2, F,P)
defined by
Xpr1 = F(Xm U, Uk)
Xo ~ N($e, Ugfddx)

with X;, € X, U, € U and v, € V forany k € N, where X, Y and V are respec-
tively the corresponding state, control and disturbance spaces. The initial state
starts from a reference state z. € X (a system equilibrium or fixed point4?) on
which centered Gaussian noise with diagonal covariance is additively applied,
Xo ~ N(z., 021dy, ). The ii.d. random process (vi)ken iS such that vy is inde-
pendent of all previous states and controls for any k£ € N. The distribution of v
for any k € N is denoted by P,. Coupled with the dynamics, an instantaneous
cost function ¢ : X x U — R, is also given to define the control model.

In the sequel, it will be convenient to define the control model as a Mar-
kov Control Model (MCM) (O. Hernandez-Lerma ) defined by the following
transition probability P on & x U:

(5.1)

P(By, (x,u)) = /v lg, (F(z,u,v))Py(dv) =P,({v eV | F(x,u,v) € Bx})
(5.2)

49In this work a fixed point is considered as a point of the state space z. € X such that
F(z,0,0) = z..
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for any By € B(X) (Borel o-algebra) and (z,u) € X x U. The function 1 is the
indicator function.
Hence, the conditional distribution of X, given X, and Uy is given by

P(Bx, (z,u)) =P(Xp41 € By | X =2, Uy = u) (5.3)

forany By € B(X).

Additionally, in this context, a policy 7 is a transition probability on ¢/ given X,
i.e. a distribution on controls conditioned on states. In the rest of this chapter,
7 (du | x) = 0y is the Dirac measure at u. Hence the notation is simplified to
7 (z) = u.

Together, a control model, a policy 7 and an initial distribution on X define
a stochastic process with distribution P™ on the space of trajectories (X x U)X.
The distribution of the process is given by P(dzodugdz; . ..) = Px,(dzo)m(dug |
dzo)P(dzy | dxg,dug) ... More details on the stochastic process are given in
Section 2.3.3 and Onésimo Hernandez-Lerma and Lasserre ; Puterman

. Lastly, the history process (Hy)ren is defined as H, = (Xo, Uy, ..., Xk)

forany k € N. When k = K, H is called the trajectory of the process. The pro-
cess (Xk, Uk, Xx11)ren is called the transition process and the marginal process
(X&) en is called a Markov Decision Process (MDP).

5.3.2 Control Problem

The studied control problem is to find a policy 7* which minimises the following

performance criterion
K

Z C (Xk, Uk)
k=0
where K € N is a given time-horizon and E™ denotes the expectation under
the probability measure P™. Here, the quantity J™ is called the value function
or objective function (see Section 3.1.4). The history process under 7* is called
the optimal history process and is denoted by (H; )xen and the random variable
Hj. is called the optimal trajectory.

In this work, the optimal policy 7* is estimated with Model Predictive Control
(MPC) applied on a model of the dynamics.

The MPC procedure (see Section 3.3.3) is performed with the iCEM algorithm,
an improved version of the Cross Entropy Method (CEM) (Rubinstein and Kroese

; Pinnerietal. ), a zeroth order optimisation algorithm based on Monte-

Carlo estimation.

J'=FE" (5.4)

5.3.3 Gaussian Process Modeling

The use of Gaussian Process (GP) regression to model relevant quantities of con-
trolled dynamical systems has long been proposed (Kuss and C. Rasmussen
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; M. Deisenroth and C. Rasmussen : Kamthe and M. Deisenroth )
notably for its distributional nature thus its ability to model uncertainty. By def-
inition, a GP is a stochastic process (here indexed by X x U/) such that any finite
collection of random variables has a joint Gaussian distribution.

Continuing from the aforementioned papers, Gaussian Process regression
is used to model the transition probability P with a model estimator Pp such
that R

PD( T (x,u)) NN(N(I>U)’ by ((CB,U), (QS,U)) | D) (5.5)
where 1 and X are respectively the mean and covariance functions of the GP
and Dis a dataset of observations from the transition process (X, Ug, Xk11)ken-
The distribution 75@ of Equation (5.5) is the predictive posterior distribution of
the GP conditioned on the dataset D (the reader is referred to C. E. Rasmussen
and C. K. I. Williams for more details on GP regression). The processes
X, U and H are respectively the state, control and history processes under the
approximate model and the same rules of notation apply as for the original
processes. The MPC policy obtained with the approximate model 721) is denoted
by #MPC. The history process under 747 is denoted by HMPC = (HMP%),cy and
the objective function under 7M€ is denoted by JMPC.

Notably, this work focuses on the sample complexity required to estimate a mo-
del Pp, of the true dynamics P accurate enough to obtain a MPC policy 7MPC that is
close to the optimal policy 7*.

Hence, two time units are considered: the sampling iteration n which rep-
resents the number of observations gathered from the system so far, and the
time index k of the current state X, of the underlying dynamical system X. It
is supposed in the following that n < k: it is not possible to gather more obser-
vations than the number of time steps of the system.

5.3.4 Expected Information Gain

For a fixed sampling budget n and a fixed configuration (e.g. the horizon KMP¢,
the number of samples for the Monte-Carlo estimation of the cost or the other
hyper-parameters of the iCEM algorithm) to perform the MPC procedure 7M€,
the control performance mainly lies in the quality of the model estimator Pp, .
It depends on two main elements: the choice a priori of the mean and ker-
nel functions x and ¥ and the collection D,, of n observations. From the work
of Mehta, Char, et al. ; Mehta, Paria, et al. , the selection of the ob-
servations can be guided by the maximisation of the Expected Information Gain
(EIG) on the optimal trajectory.

Let suppose the time iteration k of the underlying observed process X is
equal to the number of samples gathered, i.e. kK = n and the dataset is already
collected®® at the sampling iteration n such that D,, = ((x;, u;, x’i));‘:_ol and de-
note by (X, U,) a new random state-control pair to draw from the system. The

5%In this specific case of k = n, the dataset D,, simply contains the whole past trajectory of
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goal is to select the state-control pair (x,u) that maximises the Expected Infor-
mation Gain EIG on the optimal trajectory which is defined by

EIGn(z,u) =My —Bey o M (2,1, X)) (5.6)

with
Hy=H [HK | DH} (5.7)
Hy (2,0, Xny1) = H [HK | Dy, X = 2, Uy = u, Xn+1] (5.8)

where # denotes the differential entropy of a random variable. In other
words, given a level of uncertainty ‘H [FI}} | Dn} on the optimal trajectory %,

the EIG measures the reduction of this uncertainty when the dataset of the
model estimator is augmented with the transition tuple (x, u, X, 11).

An intriguing interpretation can be made by noticing that (5.6) is also equal
to the negative Conditional Mutual Information (CMI) (Pinsker ; Cover and
Thomas ) of the optimal trajectory ﬁ;( and the new state X, given the
dataset D,, and the state-control pair (X,,U,).> Thus, maximising the EIG
is equivalent to minimising the CMI between the optimal trajectory and the
new transition tuple hence tending to draw new states sharing less informa-
tion with the optimal trajectory conditioned on the dataset D,, and the event
(X, = z,U, = u). Indeed, by definition, the CMI quantifies the independence
between the distribution of the optimal trajectory and the distribution of the
new state given both the dataset and the current state-control pair.

By symmetry of the EIG, a more tractable formulation is given by

EIG, (z,u) = H (z,u) — . E [H’z(x,u, ﬁ;)} (5.9)
HE|Dn
with
H' (z,u) = H [Xn+1 | Dy, X, =, Uy, = u} (5.10)
Hy(x,u, ﬁ}) =H [XnH | Dy, X = x, U, = u, I—if}} (5.11)

Itisin practice estimated by Monte-Carlo sampling as detailed in Section 5.4.
In the original work of Mehta, Char, et al. , the EIG is maximised with
a greedy Monte-Carlo algorithm (uniform sampling) that selects the next state-
control pair (x,u) to interact with the true system and subsequently update the
dataset D,, with the new transition tuple (z, u, z') where 2’ is sampled from the

X, itis a realisation of H,, in other words D,, = H,,(w) for some random outcome w € ).

5'Here and after, a slight abuse of notation is made as the dataset D,, should be written
D, = ((xi,ui,x’i))?:_ol since the sole random quantities are X,, and Hj but it is omitted for
the sake of readability.
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true transition probability P( -, (z,u)). It assumes any state-control pair (z,u)
can be evaluated and queried at any time step. The authors’ algorithm is called
Bayesian Active Reinforcement Learning (BARL); the dataset and EIG obtained with
this algorithm are denoted by DER- and EIG®*”" respectively. In this setting, the
dataset support is the whole state-control space, Supp(DEARY) = (X x U x X)™.

However, in many real-world applications, the system is not always control-
lable and the state-control pairs that can be queried are limited to a subset
induced by the system trajectory. This constraint has been considered in the
work following the original paper (Mehta, Paria, et al. ) where the authors
proposed to restrict the dataset support to the trajectory of the system. This
second algorithm is called> Trajectory Information Planning (TIP) and similarly
the dataset and EIG obtained with this algorithm are denoted by DI'® and EIG™"
respectively.

In this case, the dataset support is limited to the trajectory of the system,
Supp(D;") € {((wh, we, Trr1))iey € (X x U X X)) | (vp)iy € V", 2p41 =
F(ag, ug, vp), 0 <i < n} C (X xU x X)" = Supp(DEAR). This set inclusion
implies that the optimal EIG obtained with TIP is lower than the one obtained
with BARL provided the transition probability estimator 751)” are the same for
both algorithms for a fixed current state z € X, maxy( ), weuy EIG(z,u) <
maxy(z/ u)ex xi} EIG(ZL’I, U/).

Besides, the latter algorithm (TIP) does not take into account the potential
benefits of including dynamics time scales in the sampling process. In the next
section, an extension of the TIP algorithm is proposed to increase the EIG for
each of the sampling iterations through the introduction of delayed state-control
pairs in the setting of Semi-Markov Decision Processes (SMDP). The new algorithm
builds upon TIP by considering the inclusion of temporally-extended actions in
the data-collection procedure to reach more distant system states that are not
reachable with the original TIP algorithm, hence increasing the amount of infor-
mation gathered from the system. A similar use of action repetition improves
learning in Deep-RL (Sharma, A. S. Lakshminarayanan, and Ravindran A
Lakshminarayanan, Sharma, and Ravindran ).

5.3.5 Semi-Markov Decision Processes Extension

A formal definition of temporal abstraction is given through the concept of op-
tions defined by Sutton, Precup, and Singh where it refers to temporally
extended courses of action. This concept has been shown by Parr to be
equivalent to the construction of Semi-Markov Decision Processes (SMDP) which
are defined below.

Let call decision epoch the time index k of the underlying dynamics (Xj)xen

5?|tisimportant to mention that the main asset of TIP is to provide a whole trajectory as input
to the EIG, which is not used in this work. Thus, only the property of querying observation by
following the trajectory of the system is used here.
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defined by equation (5.1). Semi-Markov Control Models (SMCM) generalise the
concept of MCM by letting the decisions be random variables. Indeed, con-
sider a strictly increasing random sequence (x;);en Of integers. The random
quantities n; = k; — k;_1 with support in some finite space S C N\ {0} are
called inter-decision times and the random index «; are called random decision
epochs. The resulting stochastic process (X,,);en is called a semi-Markov Deci-
sion Process. For a more detailed probabilistic construction, see Puterman ,
p. 534 and O. Hernandez-Lerma , p- 15.

In the scope of thiswork, SMDP are used to model the temporal extension of the
control process. The corresponding SMCM is introduced by first extending the
control space from U/ to U x S such that the temporal extension of the control
is encoded in the last coordinate of the control tuple, and the new dynamics
is given by PMPP(da’ | (x, (u,0))) = P(Xpio | Xk = @, Uphio—1 = u) Where
Uk.r+o—1 = u means that the control process is constant between k and k +o — 1.
The latter definition illustrates the fact that during the inter-decision time n = o,
the control process is constant and equal to u.

From now on, this construction allows to enlarge the support of the dataset
D,,, for a fixed number of observations n while maintaining a rollout, trajectory-
based sampling procedure. Indeed, the dataset support is now Supp(DMTP) C
{((wry, g, wrp40))imy € (X U X X)™ | ()27 € Ve, oy = F(ay, uy,
vp), 0 < k < nsup(S), (kj)j=; € 8", k; < kj1}, the transitions tuples ex-
tracted from the set of all possible subsequences of the trajectory up to the
maximal reachable time value.

Therefore, Supp(D]?) C Supp(D:MTP). Consequently, this suggests an ex-
tension of the EIG to the SMDP setting. Let 0 € S be an inter-decision time and
DSMTIP e the dataset under the SMDP setting at the sampling iteration n, the
resulting EIGCM ™ (2, (u, o)) is defined as

EIGMTP (2, (u,0)) == H](z,u,0) — Ep_

f15Dn

[H’Q/(x, u, o, ]:I})] (5.12)

,Hlll(xv u,0) =H [Xlin+0+1‘ Dy, X, =2, Ugpiiip 0= U, ’fn] (5.13)
,HIQI('% u,ao, E[;’) =H [‘Xﬂn-i- o+1 ’,Dna Xfin: T, Unn:f-cn-‘ro =u, E[;’a Hn] (5-14)

Hence, this measure allows the introduction of temporal abstraction in the
sampling procedure by considering the inter-decision delay to increase the po-
tential information gain. However, despite being tractable in trajectory rollout
settings, the metric defined by (5.12) needs to look ahead in the future to be
computed (non-causal). Last, note that EIG™™™ (z, u, 1) = EIG™ (x, u).

5.4 Method and Experiments

The main objective of this work is to demonstrate the increase in the total infor-
mation gathered from a system with the introduction of temporal abstraction
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via the EIG™ ™" measure. To this end, a comparison between the original TIP
algorithm and the proposed SMDP extension is performed on two controlled
dynamical systems, the Inverted Pendulum (Trélat )and the Lorenz Attrac-
tor (Vincent and Yu ).

The algorithm controls the path of the dynamical system (X}),.y and col-
lects observations (X, U;, Xi+1)?;01 to populate the dataset D,, and improve
the GP transition probability estimator 75@”. The indices n and k are respec-
tively the sampling iteration and the time index of the underlying dynamical
system (X},),cy. The TIP algorithm supposes n = k (data collected at each time
step) whilen < k (there are time steps where no data is collected) for the SMDP
extension. In the SMDP case, the inter-decision time 7, rules the optional sam-
pling procedure which defines the random decision epochs x,, = k,,_1 +7,. The
random decision epochs «,, define when the algorithm can query the system
(Xk)keN-

To estimate El , a collection of bootstrapped future states, candidate
control points and inter-decision times are sampled. The bootstrapped future
states X, .+, = x, are estimated with the GP model. This may lead to a bias in
the estimation of the EIG due to the bootstrapping error. The candidate con-
trol points and inter-decision times (u, o) are sampled from a uniform distribu-
tion Unif (I x S) at time k,, to solve arg max, , s EIG" ™" (20, (1, 0)). In this
work, S = {1,..., Omax} fOr some oy, € N. The EIGM™ is estimated by the

SM-TIP
Gn

) ——SM-TIP )
Monte-Carlo estimator EIG,,  (z, (u,0)) given by

1 ~ A~
H [ Xevot1 | Dny X, = 2, Uso0 = Uy i) — — Z’H;’(m, u, o, H}Z/JPC) (5.15)
m =1

with

Ty (2w, 0, HYPO) = H [ Xy oi1 | Doy Xy = 2, U, oo = u, HMPC, mn] (5.16)

where m is the number of Monte-Carlo samples of the optimal trajectory ﬁ,’;’i'PC

under Pp, . The entropy values are easily computed since the conditional dis-
tribution of the new state given the dataset, and the current state-control pair
is @ Gaussian distribution with mean and covariance given by the GP posterior.
More details on this procedure and the settings used are available in the paper
of Mehta, Paria, et al.

Every two sampling iterations n, the MPC policy #"P¢ is evaluated on the true
system and the objective function is computed. Four independent experiments
with different maximal inter-decision time o, € {1,2,4,8} are performed. For
each of the experiments, the algorithm is run for 10 independent trials (seeds)
to alleviate the variability proper to data-driven control methods (Henderson
et al. ). The cost function is defined as (z,u) — c(z,u) = |[|z]|* in the
case of the Lorenz attractor while the classic Gym (Brockman et al. ) cost
function (also norm-based) is used for the Inverted Pendulum. The sampling
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budget is set to nu.. = 100 for the Lorenz system and n,.. = 200 for the
Inverted Pendulum. To implement the SMDP, the system is stepped forward in
time with the action kept constant during inter-decision times. Details on the
implementation and experimental settings are available on https://github.c
om/ReHoss/1bmpc_semimarkov.

5.5 Results

Among the relevant quantities to be reported, the evolution of the EIG, the in-
terdecision times and the evaluation of the objective function are of interest to
guestion the hypothesis raised in Section 5.4.

First, the evolution of the amount of information gathered during sampling
through a comparison of (EIG]P)"w, and (EIGMTP) =+ presented in Figure 5.2
to assess the impact of the SMDP extension. Second, the corresponding inter-
decision times (7, )=+ are shown in Figure 5.3 to evaluate the necessity of tem-
poral abstraction. Lastly, the evolution of the objective function J* = from 5
fixed initial conditions X is shown as a function of the sampling iteration n in
Figure 5.4 to analyse the effective results of the proposed method. For all the
figures, the shaded area represents the standard error over the 10 independent
trials.

About the first point, one can observe that in all cases, the EIG is larger
for SM-TIP than for TIP (o,.x = 1) until one-fourth of the sampling budget is
reached. This suggests that the SMDP extension is beneficial to the informa-
tion gathering process at the beginning of the sampling procedure. This may
be explained by the fact that the inter-decision times allow to de-correlate the
collected states via the same mechanism illustrated in Figure 5.1. Note also
that, in the case of Lorenz (Figure 5.2a), the EIG after approximately half of the
sampling procedure is superior for TIP than SM-TIP since more information
(state-actions pairs minimising the mutual information) remain to be gathered.

Examining the chosen inter-decision times (7, )3, it can first be observed
that globally n,, > 1 for the SMDP algorithms (where o, > 1). This shows that
the sequential maximal EIG is approximately reached for inter-decision times
that are larger than the original MDP decision times. This confirms the rele-
vance of temporal abstraction to increase the information gathering process.
However, the inter-decision times are not necessarily always equal to oy, SUg-
gesting the more informative observations are not always the temporally most
distant ones.

Moving on to the objective function, in the case of the Lorenz system (Fig-
ure 5.4a), the evaluation performances show the learning speed is greater for
the SM-TIP settings (omax > 1) than for the TIP setting (o,ax = 1). For the Pen-
dulum case (Figure 5.4b), except for the SM-TIP setting where o,,,. = 8, the
proposed approach shows better sample complexity since very few iterations
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Figure 5.3: Inter-decision time n chosen by the SMDP during training.

are required to reach optimality (light blue curves (o, € {2,4}) are below the
grey curve (ona = 1) for the first (up to n = 20) sampling iterations. Further-
more, one of the reasons the o,,,, = 8 fails to achieve optimal performances
is likely the bootstrapping prediction error (not shown in this document) which
increases with o,,.«. INdeed, as mentioned in Section 5.4 due to the non-causal
property of EIG®™ T, there exists a trade-off between the temporal extension of
the dynamics to reach the new region of the state space and the bootstrapping
error which increases with the temporal extension.

5.6 Conclusion

This study demonstrates that, when restricted to the trajectory of the system,
the total information gathered for a given sampling budget can be increased by
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Figure 5.4: Evolution of the objective function J™" to evaluate the system during train-
ing.

introducing temporal abstraction through the usage of SMDPs. Results show
that learning the dynamics of the Inverted Pendulum and the Lorenz system is
more data-efficient with the use of temporally-extended actions.

Future work may extend this methodology to more complex systems, lever-
aging the flexibility of SMDPs. These systems may have the potential to reach
highly informative regions and efficiently capture rapid changes in system dy-
namics, as the information content can be increased when considering the time
resolution as a decision variable.

In summary, this work offers a concise yet comprehensive glimpse into the
potential of SMDPs in Model Predictive Control. The results on known systems
establish a robust foundation for broader applications and unveil potential fu-
ture advancements in control strategies.
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6 Distributional Reinforcement
Learning is Sample Efficient

This chapter presents the main results obtained during the first months of the
PhD project, on the application of Distributional Reinforcement Learning to
chaotic dynamical systems.

6.1 Introduction

A modern approach called Distributional Reinforcement Learning (D-RL) defined
in Bellemare, Dabney, and Munos shows impressive capabilities, both in
terms of policy performance and data efficiency. The distributional aspect of
learning describes the approximation of probability distributions in opposition
to classical regression. In the case of Reinforcement Learning, the distribution
of the random total cost given an initial state and control pair is considered.

6.1.1 Learning Distributions

The inference of unknown probability distribution has a long and complex his-
tory in the pattern recognition and statistics literature.

Machine Learning and Statistics

The reader may consult Kearns et al. and the references therein to learn
more about the origins of the question of probability distribution approxima-
tion. Learning distributions is a core concept of generative modelling (Hinton,
Osindero, and Teh ) and unsupervised learning (Hastie, Tibshirani, and J.
Friedman ). Itiis the central goal in nonparametric density estimation and
Bayesian statistics (see Section 3.2.3).

Reinforcement Learning

In RL, a generative model for the random total cost given an initial state and con-
trol pair is learned. This approach has been initially considered in a Bayesian
setting (see Section 3.2.3) to quantify the information acquired by exploration
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(Dearden, N. Friedman, and Russell ), and later for risk management appli-

cations (Morimura et al. ). More recently, this idea became the core con-
cept of the distributional RL paradigm. In the foundational paper Bellemare,
Dabney, and Munos , the fundamental importance of the total cost as a

distribution, in contrast to the total cost in expectation, is shown. The theoret-
ical properties of the distributional approach are exposed, and its difference
with classical RL is presented. Notably, an operator acting on conditional distri-
butions is defined, echoing the Bellman operator acting on conditional expec-
tations in classical RL.

6.1.2 Advantages of the Distributional Approach

Multiple benefits of the distributional approach have been identified in the lit-
erature.

Stability and Sample Efficiency

Among them, the distributional Bellman operator preserves multi-modality in
value distributions, which may improve the stability of the learning process.
Therefore, D-RL algorithms show improved empirical sample efficiency. More-
over, Bellemare, Dabney, and Munos argue that D-RL algorithms are more
robust against non-stationary (time-dependent) policy than standard RL, and
more globally, this paradigm makes the reinforcement learning process signif-
icantly better behaved.

A Novelty in the Flow Control Literature

Being recently introduced, the distributional approach has not been tested by
the research community interested in dynamical systems connected with flow
control.>3 Indeed, while a large part of the D-RL publications apply to robotics
environment, the field of flow control could benefit from the potential advan-
tages of this method.

6.1.3 Research Objectives and Experimental Setup

Miniaturised Chaotic Systems

Important properties of fluid flows such as chaos or symmetry are well incorpo-
rated in simple, miniaturised, chaotic systems such as the Lorenz or Kuramoto-
Sivashinsky dynamics. They are an appropriate testbed for evaluating Deep
Reinforcement Learning before scaling up to more complex systems such as
Navier-Stokes (Cvitanovi¢, Davidchack, and Siminos ).

53This work has been conducted during winter 2022-2023 when no paper on the application
of D-RL to flow control has been issued.
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Hypotheses and Objectives

This work tests two main hypotheses on the distributional approach to RL ap-
plied to chaotic dynamical systems. First, the distributional approach is more
sample efficient than the classical approach for the control of representative
chaotic systems. Second, the distributional generalises better for controlling
from other parts of the state space than the classical approach. The two ques-
tions try to address the sample efficiency and the robustness challenges of RL
in the context of flow control (those challenges are introduced in Section 1.4.1).

6.2 Distributional Reinforcement Learning

6.2.1 The Distributional Perspective

Consider the random total cost defined in Eq. (3.8) in a Markovian setting (the
initial history distribution only depends on Xj).

K
Z (Pxoym) = > _7'e(Xx, mk) (6.1)
=0

To alleviate the notation, this random variable is simply denoted Z in the follow-
ing but the reader should keep in mind that it depends on the initial distribution
Py,.

Total Cost Conditional Distribution

The principal feature of the paradigm defined by Distributional Reinforcement
Learning is to consider value distributions instead of value functions. The value
function for a state or a state-control pair under some policy 7 gives the ex-
pected value of the random total cost given the initial state or state-control pair.
In contrast, D-RL considers the distribution under some policy of the random
total cost conditioned on an initial state or state-control pair.

Definition 6.2.1 (Conditional Random Objective Function). The conditional ran-
dom objective function is defined as the conditional distribution of the random total
cost Z given (X, Uy). Forall (z,u) € X xU, the conditional random objective func-
tion is denoted by Z(z,u) for (Xo, Up) = (x, u).
Consequently, a closed-form expression of the conditional random objective
function is given by
K
Z(x,u) = c(z,u) +~ Z v le (X, ) (6.2)
=1
By definition of conditional probability, the quantity Z(x,w) is still a random vari-
able for all (x,u) € X x U. Note that this definition is equivalent as choosing
Px, = 0(z) and @ = (7 )kefo,x] Where my = d¢,y in Eq. (6.1).
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Link with the Q-function

Moreover, as the random total cost Z(x, u) is a random variable for any (z,u) €
X x U, the expectation of this random variable is well-defined if Z(x, u) is inte-
grable. This expectation is the Q-value function (see Section 3.1.4).

Proposition 6.2.1 (Link between Z-function and Q-function). The expectation of
the conditional random objective function Z is the Q-function ().

Q(z,u) =E[Z(z, u)] (6.3)
forany (z,u) € X x U.

Proof. The proofis straightforward by definition of the soft Q-function and the
conditional random objective function. Use Definition 11.5.2 in Jean-Francois Le
Gall . ]

The Distributional Bellman Operator

The Distributional Bellman operator is the analogue to the Bellman operator
(Theorem 3.1.1) in the distributional setting. Again, such fixed point operator is
defined for criteria with infinite horizon.

Definition 6.2.2 (Distributional Bellman Operator). Suppose that K = +oco. The
distributional Bellman operator T is

T"Z(x,u) = c(x,u) +yP[Z (X1,Uh) | Xo = x,Uy = u] (6.4)

forany (x,u) € X x U. The notation P [Z (X1,U;) | Xo = z, Uy = u] denotes the
conditional distribution of the random total cost Z given (X,,Uy) = (z,u).
An alternative form of the operator is

T Z(x,u) = c(x,u) +vZ (X', U) (6.5)
where X' ~ P(-|z,u) and U" ~ w(-| X").
Remark 6.2.1. The distribution T™Z(x,u) has multiple sources of randomness:
* The randomness of the next state-control pair (X', U’)
* The randomness of the total cost Z (X', U’)

It can be shown that the distributional Bellman operator is a contraction
mapping for a specific metric based on the Wasserstein distance (Bellemare,
Dabney, and Munos ). This allows for generalising temporal difference
learning algorithms to the distributional setting.
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6.2.2 Distributional RL with Quantile Regression

Being scalar-valued, the random total cost of Equation (6.2) can be regarded
as an element of a metric space where the metric is totally characterised by its
cumulative distribution function (c.d.f.).

Cumulative Distribution Functions and Quantiles Functions

Let F; be the cumulative distribution function of any real-valued random vari-
able Z. The c.d.f.is defined by F;(q) = P(Z < ¢) forany q € R,. Let ;! be the
general inverse c.d.f. (also called quantile function) defined by Fz_l(p) =inf{q €
Ry | Fz(q) > p} forany p € [0,1]. The value F'(p) is the p-quantile of the ran-
dom variable Z. When F; is continuous and strictly increasing, FZ‘1 coincide
with the inverse function of F; (otherwise the mapping is not bijective).

A well-known metric space on probability distributions can be based on the
concept of quantile functions.

Wasserstein Distance

Because D-RL focuses on distributions, a notion of distance between random
variables (more generally over distributions) is relevant. The Wasserstein dis-
tance (Villani ; Santambrogio ) is a suitable choice for this purpose.
This metric measures the cost of transporting the probability mass of one dis-
tribution to the other, for some arbitrary chosen cost (e.g. the L” norm). A
practical formulation of this distance in the unidimensional case (real random
variables) is given in terms of quantile functions.

Definition 6.2.3 (Wasserstein Distance - Quantile Version). [he Was§erstein dis-
tance of order p € [1, +oco[ between two real random variables Z, and Z, is defined

by 1
1 v
W, (B Pa) = ( [ [Pt - g o) 6.6

where Pz and F, are the distribution and the c.d.f. of Z; fori € {1, 2}, respectively.

The objective of the method presented in Dabney et al. is to construct
an optimal estimator Z of the target conditional distribution Z that minimises
the Wasserstein distance between the true distribution Z and the estimator Z.
However, the Wasserstein distance is not directly minimised in practice.

Wasserstein Gradients are Biased

Viewed as a risk function, the Wasserstein distance exhibits an important lim-
itation for practical applications based on gradient descent optimisation. In-
deed, its estimation using empirical distribution leads to biased gradients. For
instance, say that the target distribution IP;, is approximated by the empirical
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distribution @21 and that the distribution P, is parametrised by an element
f € Forfd e ©suchthatP; = Pror Py = Py. Then, the following result due
to Bellemare, Danihelka, et al. holds

Proposition 6.2.2 (Biased Gradient of the Wasserstein Distance). There exists a
(target) distribution Pz approximated by its corresponding empirical distribution
@Z} =~ SN (7,0, forsome N € N* and there exists a parametrised distribution
Py with parameter 6 € © such that

argmin VoWl (Pz ,Py) # argmin E [VgWé’ (ﬁ)Z} , Pg)] (6.7)
9o )
where W, is the Wasserstein distance of order p € [1,+oc[ defined in Definition 6.2.3.

The gradient of the Wasserstein distance to the power p is biased when estimated
using empirical distributions.

Proof. See Bellemare, Danihelka, et al. . O

This result is relatively weak but contraindicates a general use of gradient-
based optimisation over a Wasserstein risk for estimating an approximation Z
of the random total cost distribution Z. Within this context, an approach based
on the use of a loss function that allows unbiased gradient estimation is being
sought.

Quantile Distribution

To this end, a specific space of distribution is constructed such that a Wasser-
stein metric minimisation can be achieved through a learning task that exhibits
unbiased gradients. Hence, for each (z,u) € X x U, the authors of the refer-
ence paper define what they call a quantile (conditional) distribution that is a
mapping from X’ x U to the set of discrete uniform probability distributions on
a finite set of quantiles (g;)icp1,n,) Which will be learnt by the algorithm.

Definition 6.2.4 (Quantile Distribution). A N,-quantiles distribution Zisa map-
ping
Z:XxU— ]P(Unif,Nq)

(z,u) — Unif ((Z]\z (z, u))ie[[l,Nqﬂ>

where Pnir,n,) IS the set of discrete uniform probability distributions on N, atoms
and Unif((:),cp, v,p) s the uniform probability distribution on the set (qi),cpy n,-

(6.8)

Hence, for any (z,u) € X x U, Z(z,u) ~ Unif((g(z, u))icq,n,)- The set of quantile
distributions is denoted by Fog.

Remark 6.2.2. Since quantile regression involves a family of risk functions indexed
by quantile levels \ € [0, 1], the computational complexity of algorithms based on
this approach is N, times higher than the classical regression methods.
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Remark 6.2.3. for a fixed quantile order \ € [0, 1], the task ¢, is an asymmetric
convex functional penalising overestimation errors with weight A and underestima-
tion errors with weight 1 — \.

This way, conditional distributions in Fqr are characterised by a finite set of
quantiles functions. Thus, this approach amounts to estimating optimal quan-
tiles (g;(z,w))ien,n,) for each (z,u) € X x U such that the Wasserstein distance
between the true distribution Z(z, u) and the estimator Z(z, u) is minimised.
Now, the hypothesis space considered is the set of all conditional quantile dis-
tributions which is denoted by Fqr. Thus, E(x, u) € Far.

It turns out that it can be shown (Dabney et al. ) that for a uniform dis-
cretisation of [0, 1] into N, probability values (\;)icpi v, = (qu)ie[[l,Nqﬂr the op-
timal quantiles such that the estimator Z(x, u) minimises the Wasserstein dis-
tance W1 (Z(z,u), Z(x,v)) in the sense of Definition 6.2.3, between the true dis-
tributiorl Z(x,u) and the est~imato[ Z(x,u), are the quantiles (g; (z, u))icpi,n,] =
(FE(;,U)(Ai))ieﬂl,Nqﬂ where> \; = (\i)icpi,n,] = (A“;“i),-e[[LNq_lﬂ. Consequently,
an optimal estimator for the Wasserstein distance considered here is given by
Z* (2, u) = Unif((gf (z,w))ieq,n,)-

Now, the question of the quantile estimation arises. Indeed, minimising the
Wasserstein distance 1¥/; amounts to estimating optimal quantiles.

Quantile Regression

Naturally, quantile regression (Koenker ; Koenker ) is a suitable tech-
nique for this purpose: A family of learning tasks is specified as a collection of
functions (€A>>\e[0,1] where each task is indexed by a probability value A € [0, 1].

Definition 6.2.5 (Quantile Regression). Quantile regression is defined as the min-
imisation of the following collection of learning tasks

AZ —q ifZ>q

_ = (6.9)
(1=N|Z—q| ifZ<q)

E,\(Za@ = (Z - Q) (/\ - 1(Z<q)) = {

for any quantile level X\ € [0,1] and q € supp(Z) where supp(Z) is the support
of the random variable Z (the smallest closed set such that the probability of the
random variable Z being outside this set is zero). Fq; () is a critical point of ¢, for
any X\ € [0, 1], i.e. a global minimum (by convexity).

In practice, for a set of N, quantile levels ()\;)icp1,n,], the average task risk for
quantile regression is defined as

_ 1 ) _
L‘(Q/\Fi)ie[[w]] <Z7 (Qi)ie[[l,Nq]]> =N ZEPZ [0 (2, 4)] (6.10)
N ) 4

54Those mid-quantile values recall how the median (3-quantile) is optimal in L' regression,
which is used to define the W7 distance.
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It is important to note that quantile regression exhibits no bias in the gradi-
ent estimation discussed above.

No Bias in Gradient Estimation for Quantile Distributions

Importantly, the Wasserstein distance W, restricted to the space Fqr of quan-
tile distributions (uniform probability distribution on N, points) can be min-
imised without bias in the gradient estimation. In other words, when the dis-
tributions considered are quantile distributions, the Wasserstein distance W,
can be minimised indirectly through the unbiased minimisation of the average
quantile regression risk, provided the quantile are well-chosen (mid-points).
However, this approach restricts the hypothesis space significantly and noth-
ing guarantees that the target distribution belongs to this space.

Though, in Reinforcement Learning, the target distribution is unknown and
the temporal difference target is used as a proxy>°. Moreover, the crucial point
is to find a fixed point of the Bellman equation. It happens that the distribu-
tional Bellman operator from Definition 6.2.1, restricted on Fqg is a contraction
mapping for a particular metric based on W3, which permits the application of
basic dynamic programming algorithms.

Consequently, for a fixed collection \ = (Xi)ie[[LNq]] of quantile levels, the

estimates ¢z = (qz:)iepi,n,] Of the optimal X—quantiles ¢ = (¢})iep,n, are
obtained by minimising the average quantile regression risk £§R where Z ~
Unif((gz,:)iep,n,)-

The next section sets the foundations of the Distributional-RL algorithm
used in this work: the Distributional Truncated Quantile Critics algorithm intro-

duced in Kuznetsov et al. for which the core conceptis an extension of the
Soft Actor-Critic algorithm Dabney et al. to its distributional version (see
also J. Duan et al. ).

6.3 Distributional Soft Actor-Critic

The maximum-entropy principle is a central concept in this thesis and appears
again in this part of the document. The distributional method used for this
work is based on a prominent algorithm in the field of Maximum-Entropy Re-
inforcement Learning: the Soft Actor-Critic algorithm, which was introduced
in Haarnoja, A. Zhou, Abbeel, et al. ; Haarnoja, A. Zhou, Hartikainen, et al.

55As mentioned in Bellemare, Dabney, and Munos and Sutton and Barto :"learn a
guess from a guess".
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6.3.1 Soft Actor-Critic

As its name suggests, the Soft Actor-Critic algorithm belongs to the family of

actor-critic algorithms. As discussed in Section 2.2.5, the term “Soft” refers to the

entropy regularisation term added to the standard (“hard”) Bellman equation.

The optimality equations for the soft-objective have been derived in Ziebart

. Later aschema of policy iteration (see Section 3.3.2) that fits well with func-

tion approximation has been proposed by Haarnoja, Tang, et al. through
the use of Deep Energy-Based Models (EBMs) for the policy.5°

Soft Bellman Equation

Consider the soft objective problem defined in Eq. (3.18)-(3.19) for an infinite
horizon problem and a Markov policy. Then the objectives read

Jy, (r) = inf E

TEA

27 (Xi,m) —*Hm (- | Xi)] | Xo = x] (6.11)

for the soft value function and

Q% (r,u) = inf E

TEA

Zv (Xi,m) — " H[m (- | X)) | Xo =2, Uy = u| (6.12)

for the soft Q-function.
It can be shown (Haarnoja, Tang, et al. ) that an optimal Markov policy
7 exists and its conditional probability density is given by

el 0) = exp o (Qile) = Vi(o)) ) = s o (@it ) 69

for all (z,u) € X x U with C},(x) a normalisation constant incorporating the
value function V;;. Consequently, it is crucial to find the optimal soft Q-function
()3, to derive the optimal policy 7*. When the set of policy II is Markovian, a
Dynamic Programming equation can be derived from (6.12) and (6.13). The re-
sulting equation is called soft Bellman equation.

Soft Policy Iteration

Then, a policy iteration scheme (see Section 3.3.2) can be employed to itera-
tively solve the problem of finding the optimal policy:

56There is an important link between the maximum-entropy principle and the Gibbs distri-
bution that is prominent in statistical mechanics (Mézard and Montanari ; Mohri, Ros-
tamizadeh, and Talwalkar ). The only thing that matters here is that the policy is a Gibbs
distribution, i.e. probability measure with density z — Ciz exp(—BE(z)) where Cz is a normal-
isation constant.
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* The policy evaluation consists in approximating the soft Q-function @7, for
a given policy 7. This step is achieved by solving the soft Bellman equation
for the soft Q-function by fixed-point iteration.

* The policy improvement step updates the policy toward its known closed
form given in Eq. (6.13) using the soft Q-function obtained in the previous
step by solving

1 1

where C7 (z) is the normalisation constant of the distribution (- | z)
which is absorbed by the learning rate of any gradient-based optimisa-
tion algorithm. Hence, the resulting policy 7}, gets closer to the family
of policy characterised by such exponential form. This way, this policy is
necessarily closer to the optimal policy 7;,. Thus, this step improves the
policy at each iteration.

i (| 2) = arg min Dic (w% | 2)

Soft Actor-Critic

By estimating both a policy and a value function, the Soft Actor-Critic algorithm
enters the category of actor-critic methods (see Section 3.3.2). In the sequel,
the policy estimator is denoted by 73, and the soft Q-function estimator by Q.
Moreover, it is supposed that two mx-dependent data distribution are given,
possibly by sampling from the environment or collecting historical data from
a simulation. The first distribution P7* is a measure on the state space X’ and
the second distribution ]P’fng’X/’U, isa measureon X x U x X x U. This prob-
ability measure can be thought as a state occupancy measure and observed
transitions distribution, respectively under the policy 7.

* The policy evaluation step solves the soft Bellman equation by minimis-
ing the quadratic risk between the soft Q-function and its one-step ahead,
forward expression In the maximume-entropy setting, if the policy belongs
to the class of energy-based policy given by Eq. (6.13), then the soft Bell-
man equation can be rewritten as (the proof is given in Haarnoja, A. Zhou,
Abbeel, et al. )

Qi (x,u) = c(x,u)+v [ Q3 (2, u)—a*logm (u'|2') Pda' |z, u)m (u'| z) du

X' xU
(6.15)
Consequently, the policy evaluation step consists in the optimisation of
the quadratic risk defined by

@LA = arg min/ (Qu(z, u)—Qulz, u, 2, u’))QIP’?)Z‘uX,’U, (dx, du, dz’, du")
QueF JAXUXXXU
(6.16)
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where F is the hypothesis space of the soft Q-function and the temporal
difference target 4 is given by

Qn(x,u, 2’ u') = ez, u) +7Qy (¢, u') — o log 7 (u' | 2") (6.17)

- Given an estimate of the soft Q-function Qy, the policy improvement part
updates the policy by using an estimation of the target policy in Eq. (6.13)
and optimising the averaged Kulback-Leibler (KL) divergence between the
current policy and the target policy from Eq. (6.14)

N 1 1~ .
Ty (-] x) = argg/nrﬁ/DKL ( | ) i) exp <a_HQH(x7 -)))PXH (dx)
(6.18)

Since the target function @H depends itself on @H the minimisation of the risk
in Eq. (6.16) can be challenging in practice.>” In statistics, the use of an estimator
to build another estimator such as in Eq. (6.16) is known as bootstrapping.

Parametrisation and Learning

These algorithms have been designed amidst the recent advances in Deep Rein-
forcement Learning applied to Robotics where problems are high dimensional
and state and control domains are continuous. Suitable function approxima-
tors are thus needed to learn in such environments. In this vein, neural net-
works are considered. However, instead of running policy evaluation and pol-
icy improvement to convergence, the algorithm alternates between optimising
both networks with Stochastic Gradient Descent.

It should be noted that the need of neural networks is not necessarily clear
in the context of flow control where only a few observations are available (that
are considered as states when applying such algorithms).

Under those circumstances, the hypothesis spaces are parametrised F,, =
©, and Fg = O where ©, and O, are the neural network weights spaces of
the policy and the soft Q-function, respectively. Consequently, the pollcy and

the soft Q-function become parametric estimators 7, = 747 and Qn = QH

6.3.2 Combining Distributional Reinforcement Learning and
Soft Actor-Critic

By adapting the Distributional Bellman operator defined in Eq. (6.4)-(6.5), in
its maximume-entropy form described by the soft Bellman equation defined in

57Actually, another approximator of z — [, QF,(x,u)m(u | x)du is used in the original SAC
paper to stabilise the learning process (see Haarnoja, A. Zhou, Abbeel, et al. , p- 5). How-
ever, the SAC formulation given here is identical as the one considered in the TQC paper to
build their distributional counterpart of SAC. Polyak averaging (Polyak and Juditsky ) can
be used to stabilise the learning process.
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Eq. (6.15), which also defines an operator), a maximum entropy version of the
Distributional Bellman operator can be defined.

Quantile Temporal-Difference Learning

The distributional approach considered here is based on the quantile regres-
sion method presented in Section 6.2.2. The first goal is to estimate the distri-
bution Z(z,u) for any (z,u) € X x U with a quantile distribution Z(z,u) € Fag.
This quantile distribution is characterised by a set of quantiles (g7 (x, u))icp1,n,]-

Thus, for a fixed state-control pair (z,u) € X x U, an approximation of the
minimisation objective (empirical risk) is now given by

Ng N
—— ~ 1 ? ~
QR ~ ). O ). —_ - . O
L% o e (Bl @) = 5 3 > (%, ), @il w)

(6.19)
where Z;(z,u) = c(z,u) +vZ;(X',U") — o*logw (U’ | X') for any i € [1, N, ] with
X'~ P(|z,u)and U" ~ 7(- | z). The target (Z’(SE,U))ie[u,N]] is a collection of
i.i.d. samples generated from an i.i.d. realisation (2(:)&, u))iep,ny Of the random
total cost E(x,u) ~ Unif((qz,)iep,n,1)- Note that the empirical risk defined in
Eq. (6.19) is a function of (z,u) € X x U.

In other terms, the conditional distribution Z is first used to generate sam-
ples of the random total cost. Then, a temporal difference target distribution
Z is constructed from these samples. The goal is to find new quantiles that
are closer to the temporal difference target distribution. This way, a fixed point
of the distributional Bellman operator is approximated. This method is known
as Quantile Temporal-Difference Learning and has been analysed thoroughly in
Rowland et al. . Thiiﬂxed point is a conditional (quantile) distribution.

In practice, the risk EQR(x,u),(L)ie[u,Nqﬂ is not minimised for any state-control

pair (z,u) € X x U, but the average risk over a dataset of state-control pairs is
optimised. The following averaged risk is considered

EQR(Xi)ieﬂl,Nqﬂ = /X‘ggR(x,u),(L)ieﬂl,Nﬂ <(Zi)i€[[17Nﬂ’ (EI\Z,i)ie[[l,Nq]]> IED7TX,U (da:,du)
(6.20)

Hence, the random total cost approximator Z, being characterised by the
quantile estimators (qz,)icp1,n,], IS Optimised by minimising the average quan-

tile regression risk L. In other words, the policy evaluation step is replaced
by the quantile regression step and solves

Z/ ~ Unlf <(azlvi)i€[[1,Nq]]> = aZI'/gEI;l;;’l LQR(Xi)ie[[LNq]] <(Zi)i€[[l,N]]7 (aZ”,i)ie[[l,Nﬂ])
(6.21)
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which is equivalent to a minimisation over the quantiles (cjzlvi)ie[[l?Nq]] since the
distribution belongs to the family Fqr of quantile distributions (uniform proba-
bility distribution on N, points).

(ZI\Z'QZ*E[[LNQH = argmin EQR(L)Z-E[[LN(]]] ((Zi)ie[[l,N]]a @Z”,i)z‘e[[LNq]]) (6.22)

(ZI\Z”,z‘)iE[[l,Nq]]

To sum up, EH replaces @H and is characterised by the quantile estima-
tors gz = (qzi)ien,n,]» Zn replaces Qy and is characterised by the temporal
difference target quantile estimators q := (¢;)icpi,n,] = (c(z,u) + v Zy (2 ) —
o*logm (u'|7"))ien,n,), @and the policy evaluation step is replaced by the quantile
regression step where the value is now atomised into quantiles.

Remark 6.3.1. In practice, the quantile regression loss leads to unstable optimisa-
tion, and an adaptation of the Huber loss for quantile regression is preferred.

Policy Improvement

The policy improvement step is straightforward. It is performed by policy gra-
dient on the esAtimated Q-function ()« obtained from the random total cost
approximator Zy. Indeed, by Proposition 6.2.1, the Q-function is the expecta-
tion of the random total cost. But since ZH ~ Unif((a\Zi)ie[[leq]]), its expectation
is well known and is given by E[Zy] = Qy = N SV Gz

Thus, the policy improvement step of Eq. (6 18) simplifies to

Ng

1 -
/7%;{ ( | m) = arg min/ e Z Z]\Z,i(x, u) — o' log i (u ‘ :U) P (d:lj‘7 du)
XxU Nq

11
7' ell i—1
Ny

. 1
= arg mm/
' ell XXZ/{N Zl

Gz (2, w)P™ (dx, du) —a/?—[ " (| 2) P (dx)

(6.23)

The method aims to minimise the Wasserstein distance between the ran-
dom total cost Z and its corresponding temporal difference target distribution
7 = c(x W) +~Z(x' W) — o logw (o |#') for all (z,u) € X x U, 2’ ~ P(-|z,u)
and v ~ m(-|x). This way, a fixed point of the distributional Bellman operator
is approximated.

Parametrisation and Learning

As well as in the non-distributional case, the hypothesis spaces are parame-
terised 7z = Oz and F; = Fqr = Gg" such that the family of quantile distribu-
tions is the collection of N,-tuples spaces since (qz,)icp1,n,] = (Q?j)ie[[l,Nq}]-
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6.3.3 Complementary Features

The core of the method has been presented in the previous sections. However,
being in practice parametrised by neural networks, the learning process can be
extremely brittle in practice (Hasselt et al. )-

Stabilisation and Variance Reduction

Common features can be added to the algorithm to improve its stability and
performance. The following features are prominent:

+ Ensembling: The Q-function or Z-function can be approximated by a set
of estimators to reduce the variance.

* Polyak Averaging: The temporal difference target @ or Z can be up-
dated using Polyak averaging (Polyak and Juditsky ) to improve the
behaviour of the stochastic approximation.

* Huber Loss: The quantile regression loss can be replaced by a smoother
Huber loss type to stabilise the learning process Dabney et al.

Overestimation Correction by Quantile Truncation

A well-known issue for algorithms combining Q-learning and function approxi-
mation is the overestimation of the Q-function (Thrun and Schwartz ; Has-
selt ; Fujimoto, Hoof, and Meger ).

In fact, the distributional RL method used in this work called Truncated Quan-

tile Critics (TQC) has been designed to address this issue Kuznetsov et al.
By truncating the top nunc quantiles of the estiAmated distribution Z5 ~ Unif
((@z4)icp.n, ), to get the truncated distribution ZE¢ ~ UnNif((qz,)iep1, Ny —nuunc])r
the overestimation of the Q-function is reduced. Indeed, truncation allows for
arbitrary granular overestimation control by biasing the distribution towards
the lower quantiles.

Finally, TQC implements the three features mentioned above: ensembling®%,
Polyak averaging, and Huber loss in addition to quantile truncation to improve
the stability and performance of the algorithm. In this work, the implementa-
tion of TQC from Stable Baselines3 is used Raffin et al.

The next section presents an application of the TQC algorithm to the control
of a chaotic system. A comparison with the state-of-the-art method is provided
to gain insights on the particular features of the TQC algorithm and its potential
for flow control applications.

58The ensemble is composed of nens of Z-functions, thus neps collections of N, quantiles.
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6.4 On the sample efficiency of Distributional Re-
inforcement Learning

This work extends the results obtained in Bucci et al. on the control of the
Kuramoto-Sivashinksy (KS) partial differential equation with Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al. ). The KS system exhibits chaotic prop-
erties and possesses similarities with the Navier-Stokes equations (see Section
3.4.3).

The performance of other baseline deep RL algorithms for the control of
chaotic systems is the first question addressed in this work. Indeed, Bucci et al.

solely used DDPG to control the KS system. Being an off-policy algorithm, it
is prone to instability (Matheron, Sigaud, and Perrin ). Moreover, on-policy
algorithms and maximume-entropy reinforcement learning (Chapter 4) may also
be suitable for the control of chaotic systems.

The performance criterion considered here is the sample efficiency of the
algorithms. Since Distributional Reinforcement Learning (DRL) shows promi-
sing results in terms of learning speed and stability (Bellemare, Dabney, and
Munos ), it is of interest to compare it with the other baseline algorithms.
Consequently, the first question addressed in this work is

* How does the sample efficiency of Distributional RL compare to other
baseline deep RL algorithms for the control of chaotic systems?

The second question is related to the generalisation capability of the learned
policies to initial distribution Py,. Thus, the second question addressed in this
work is

* How do policies learnt with Distributional RL generalise to out of training
initial conditions compared to other baseline deep RL algorithms?

The next section presents the experiments performed to gather insights
regarding the previous questions.

6.5 Experiments

In order to answer the questions raised in the previous section, a series of ex-
periments are conducted. Basically, they build on the training of deep RL algo-
rithms on the Kuramoto-Sivashinsky PDE (see Section 3.4.3).

Four standard deep RL algorithms and one instance of deep Distributional
RL are considered in the following experiments. Each of them represents a
particular aspect of the RL literature (On-policy, Off-policy, Maximum Entropy).
Concretely, the following algorithms are considered:

+ Deep Deterministic Policy Gradient (DDPG), off-policy gradient based al-
gorithm (Lillicrap et al. ).

131



+ Trust Region Policy Optimisation (TRPO), on-policy algorithm with a trust
region mechanism to ensure smooth policy updates (Schulman, Levine,
et al. ).

+ Proximal Policy Optimisation (PPO), computationally efficient extension
of TRPO (Schulman, Wolski, et al. ).

* Soft Actor-Critic (SAC), a deep learning approach to the maximum entropy
version of the Bellman equation (see Section 6.3).

* Truncated Quantile Critics (TQC), a Distributional Reinforcement Learning
extension of SAC, with critic ensembling and value function correction by
large quantile (extreme values) truncation (see Section 6.3.3).

All the optimisation procedures (a.k.a. training or learning processes) are car-

ried out with the default hyperparameters from Stable Baselines3 that often cor-

responds to the original paper configuration or benchmark configurations. Fi-

nally, each of the algorithms is trained over five i.i.d. runs (random seeds).
The first question asked in Section 6.4 is now addressed.

6.5.1 On the sample efficiency of Distributional Reinforce-
ment Learning

In the perspective of answering the first question, training on the KS environ-
ment is analysed. Results of the training process are presented in Figure 6.1.
The training time unit is given by the number m € N* of interactions with the
environment (which determines the sample complexity). This number also cor-
responds to the number of decisions (control input). In the case of this experi-
ment, a limited budget m = 2 x 10° is set. The initial distribution Py, is defined
such that Xy ~ N(z., 02Id,, ), i.e. the initial state is randomly picked in the
vicinity of the equilibrium z. = z.; with perturbation noise 0. = 10~'. The
controlled trajectory length of the KS environment is set to X' = 200.

Figure 6.1 shows that the training dynamics of TQC minimises the objective
criterion throughout the training process compared with the other algorithms.
The performance spread is significant for TQC against the other algorithms.
Otherwise, the best algorithms are instances of on-policy algorithms (TRPO and
PPO).

6.5.2 Ablation Study

An ablation study is performed to evaluate the influence some features of par-
ticular importance implemented by TQC. The features considered are the critic
ensemble size, the number of quantiles and the maximum entropy regularisa-
tion coefficient. The number of critics is varied from 1 to 2, the number of quan-
tiles is equal to 1 or 25 and the entropy regularisation coefficient is set to zero
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Figure 6.1: Training dynamics of the deep RL algorithms on the KS system over 2 x 10°
environment steps. The x-axis is the number of environment steps, and the y-axis is
the objective value.

or alearnable value (which is inherited from the follow-up SAC paper Haarnoja,
A. Zhou, Hartikainen, et al. by the same authors). This ablation study is
performed over 5 independent runs. The results are presented in Figure 6.2.

First, the limit case when the number of quantiles is set to IV, = 1 fails to con-
verge. This case amounts to learning the median of the distribution. Second,
the critic ensemble size has a slight impact on the performance. Ensembling
seems to have a minor positive impact. Third, when removing the entropy reg-
ularisation, the performance is degraded and the training dynamics are less
regular. This suggests that the entropy regularisation adds smoothness to the
learning landscape (Chapter 4 discusses this phenomenon). Thus, the combi-
nation of quantile regression and maximum entropy reinforcement learning
seems to have the largest impact in this setup of the KS system.

6.5.3 Generalisation to other initial conditions

The second question mentioned in Section 6.4 is now addressed. The gener-
alisation capability of the learned policies to out-of-training initial conditions is
evaluated. To this end, the algorithm achieving the best performance after TQC
in the previous experiment is retained (namely PPO) for a comparison analysis.

Recall that the Kuramoto-Sivashinsky system is initialised with a Gaussian
perturbation around the equilibrium z.;. The initial distribution P, is defined
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=

Figure 6.3: Qualitative comparison of TQC and PPO on other initial condition distribu-
tions. Learnt policies are evaluated on twice the environment time horizon (K). Each
heatmap represents the controlled state (y-axis) of the KS system w.r.t to the time (x-
axis). Rows: different initial points z. = Ter such that Xo ~ N (xe, 021;). Columns:
TQC, PPO.

such that X ~ N (z., 021;). As stated in Section 3.4.3, the KS partial differential
equation exhibits four equilibria (zc:)icqi,4).>° The training is performed with
Te = Tey, O = 107!, and the evaluation presented in Figure 6.3 is performed
with z, € {.:, zey, zc; } with twice the rollout length used for training 2K = 400.
Figure 6.4 shows the result for the same setting, but the intensity of the noise
(standard deviation) is 10 times higher. In this case, Xy ~ N (z., 100.).

Some observations can be extracted from the figures. On one hand, TQC
stabilises the dynamics relatively well from any starting z. € {xe»{, Tey, :L“e;;} for
a time horizon of 2K, while PPO stabilises only dynamics starting from z, = x.;
for arolloutlength equal to K. On the other hand, TQCis robust to the increase
of noise intensity.

Note that quantitative results evaluating the objective function on control-
led trajectories from other initial conditions confirm the qualitative observation.
However, those results are kept from the reader, for the sake of brevity.

59Since the state space X for KS is a function space. The equilibria are function of the space
z € [0, Lx] — .+ (2). In practice, those functions are discretised with a finite dimension dx €

N,
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Figure 6.4: Qualitative comparison of TQC and PPO on other initial condition distribu-
tions. Learnt policies are evaluated on twice the environment time horizon (2K = 400).
In this case the noise intensity is set to 10c. > 0, ten times the value used for training.
Each heatmap represents the controlled state (y-axis) of the KS system w.r.t to the time
(x-axis). Rows: different initial points z. = Ter such that Xo ~ N (z., 021). Columns:
TQC, PPO.
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Figure 6.5: Training dynamics of the deep RL algorithms on the KS system over 2 x 106
environment steps. The x-axis is the number of environment steps, and the y-axis is
the objective value. Some algorithms do not have training dynamics data after some
point since all algorithms are allowed the same training clock-time but do not have the
same sample complexity.

6.5.4 Asymptotic performance

This last part investigates the asymptotic performance of the algorithms. Con-
sequently, the sample size is increased by a factor of 10 such that m = 2 x 106,
Figure 6.5 shows the training dynamics of the deep RL algorithms on the KS
system over m = 2 x 10° environment steps. TQC presents impressive learning
speed, but the on-policy algorithms show better performances after roughly
m = 4 x 10° environment steps. Moreover, TQC is roughly four times slower
than the on-policy algorithms.

6.6 Conclusion

This chapter introduces the Distributional Reinforcement Learning framework
and its application to the control of chaotic systems. The Kuramoto Sivashinsky
PDE is used as a benchmark system. The DRL algorithm used is the Truncated
Quantile Critics algorithm, which is an extension of the SAC algorithm. The
performance of TQC is compared to other baseline deep RL algorithms and
shows promising results in terms of sample efficiency. However, the algorithm
is computationally slower than all other baseline algorithms.
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Further work includes understanding the reasons behind the performance
of TQC and the application to more complex fluid flows.



7 Towards Neural Controlled
Delay Differential Equations
for Model Based Control

This chapter presents a project that aims to address particular challenges of
data driven control with continuous time dynamics modelling. The neural dif-
ferential equation framework for continuous time approximation is presented
with its underlying motivations, then preliminary results are presented and dis-
cussed.

7.1 Introduction

This chapter introduces a unified way of addressing, to some extent, at least
three main challenges in data-driven control: sampling time robustness, partial
observability, and dynamics delays. These questions will be discussed in the
following sections.

The underlying idea is originally motivated by the need to model the lag be-
tween actuator and sensor signals observed in the Cavity Flow Control problem.
It appears that a neural model of the continuous-time control-free dynamics
called Complementary Deep Reduced Order Model (CD-ROM) (Menier et al. )
that aims at reconstructing the full system state dynamics with a history of in-
complete observations, was developed within the research group associated
with this work.

In this context, bibliographic research led to three central articles on Model-
Based Reinforcement Learning in continuous time that were used to frame
and build the present study. The first paper Du, Futoma, and Doshi-Velez
models semi-Markov Decision Processes (with random decision times, see Sec-
tions3.1.2) with Neural Ordinary Differential Equations (NODE), an actor-critic al-
gorithm and optionally Model Predictive Control (MPC). The second one (Yildiz,
Heinonen, and Lahdesmaki ) addresses the question of robustness to time
discretisation schemes in Reinforcement Learning using a Continuous-Time Re-
inforcement Learning (CTRL) approach with NODE. The last paper (S. Holt et al.

) introduces a learning-based control method for continuous-time delayed
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dynamics, where the authors combine a continuous-time model of the dynami-
cal system, which is built over the Laplace transform S. I. Holt, Qian, and Schaar
, with a gradient-based MPC algorithm.

Those three articles encompass the challenges aforementioned and pro-
vide a solid reference for the development of the present work. The next sec-
tion addresses the question of the robustness to time discretisation and irreg-
ular sampling times of learning-based control algorithms.

Nagabandi et al. ; Meng, Gorbet, and Kuli¢ ; Bradtke and Duff

7-1.1 Continuous-Time Reinforcement Learning: Temporal
Abstraction

As emphasised in the introduction of this manuscript (Section 1.4.1), the ques-
tion of robustness is a significant concern for data-driven flow control. Know-
ing already that reinforcement learning methods are extremely sensitive to the
choice of training hyperparameters, a growing interest regarding the robust-
ness of RL methods to time or spatial discretisation schemes has emerged re-
cently in the literature (Tallec, Blier, and Ollivier ). For instance, Kidger et
al. show that their particular neural ODE model® is the continuous-time
limit of a Recurrent Neural Network (RNN) that handles irregular time series,
in a non-controlled setting. Those developments are motivated by the recent
advances and challenges in the application of learning-based control to real-
world systems (Dulac-Arnold, Mankowitz, and Hester ). This brings again
the concept of temporal abstraction that was addressed extensively in Chap-
ter 5 where a method governing the data sampling times is used to reduce the
sample complexity of a model learning procedure.

In this chapter, the abstraction is obtained by design through modelling
the continuous-time dynamics of the system to approximate an optimal solu-
tion of the continuous-time control problem. This data-driven approach is now
referred to as Continuous-Time Reinforcement Learning (CTRL) in the literature
(Munos and Bourgine ; Doya ), but it amounts to be a learning-based
approach to Stochastic Optimal Control defined in Chapter 2.

7.1.2 Partial Observability: Information States

There has been a long history of research work on both the theoretical and
practical aspects of Partially Observed Markov Decision Processes (POMDPs)
since the publication of the paper Astrom that laid the theoretical foun-
dation of the problem. As in the standard RL literature, at least two main
branches of research can be identified. First, a theory referred to as “exact”

®0This model is also termed as Neural Controlled Differential Equation (NCDE) in that paper
but for another reason (the control in Rough path theory is the signal against which the dynam-
ics is integrated).
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relying on Dynamic Programming methods where optimality guarantees are
obtained (Sigaud and Buffet , Chapter 7). In general, the exact algorithms
obtained have a large computational complexity with respect to the size of the
state and action spaces due to the complexity of the constructed representa-
tions of the system. To counter this, the second branch of research focuses on

“approximate” solutions (Cassandra ). A concise but complete historical
overview of the different approaches for exact and approximate planning with
POMDPs is given in Subramanian et al. . The PhD thesis Cassandra

and the seventh chapter of the book Sigaud and Buffet provide a strong
presentation of the question, mainly in the finite state and action space case
(exact, tabular case). For a presentation in general state and action spaces,
the reader is referred to the book O. Hernandez-Lerma . The article Alt,
Schultheis, and Koeppl considers the problem of partial observability in
continuous time.

Several approaches encountered in the literature construct an augmented
state based on the history of observations such that the augmented dynamics
become Markovian (Bertsekas ). Afirst important approach is made with
a random representation of the state, called the belief state.

Belief State

The belief state approach shares the same idea as the Bayesian approach pre-
sented in Section 3.2.3, where a guess of the state is represented by a prob-
ability distribution. This also echoes to the relaxed control theory presented
in Section 2.2.5 where the control is a probability distribution over the control
space (O. Hernandez-Lerma ). In the PO-MDP case, the belief state is a
probability distribution over the state space which represents the agent’s be-
lief about the current state of the system. In fact, the belief state is in general a
filter (see Definition 2.2.11) that estimates the state of the system given the his-
tory of observations (Andrieu and Doucet ). The belief state is updated at
each time step by the observation and the control. Viewing the problem in the
space of belief states, the PO-MDP is transformed into a Markov Decision Pro-
cess (MDP) where the state space is the space of belief states. A drawback of
this approach is the curse of dimensionality, as the belief state is a probability
distribution over the state space for which the complexity grows exponentially
with the dimension of the state space (Sigaud and Buffet ).

Information States and Sufficient Statistics

Since the history process constructed from any stochastic process is a Mar-
kov process, methods based on Markovian representations such as Dynamic
Programming (see Section 2.2.6) can be applied using the history process as
augmented state for a augmented Markov Decision Process (MDP). However,
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this default approach is not efficient because algorithms are carried out over a
space of expanding dimension (Bertsekas ).

An alternative to the filter (belief state) approach is to consider a determinis-
tic transformation of the history process that preserves the information of the
system. A function ¢(H,) of the random observation history H; attime ¢ € I (or
h: in the deterministic case, see Section 2.3.2) can be considered. This transfor-
mation of the history is called the information state at time t € I. The informa-
tion map ¢ should be viewed as a mapping from the space of maximal-length
history to a space of finite dimension.

On the contrary, if the information map was chosen as ¢ = Id, the informa-
tion state would be the history itself (¢(H;) = H,). In this case, the dimension
of the information state would increase with time, which is not desirable for
algorithmic applications.

Thus, the information state has the property to produce a compressed rep-
resentation of the information for which the dimension does not increase w.r.t.
time. As mentioned in the previous paragraph, the information conservation
property defined by the information state is formally defined as ¢(H;) being
a sufficient statistic Barra ; M. Hoffman for the histrory process H; .
In probabilistic terms, the two random variables convey the same information
about the system.®" Precisely, conditional probabilities given the information
state are the same as conditional probabilities given the history process.

Takens' Theorem

Another point of view coming from the theory of dynamical systems is given by
the Takens' theorem (Takens ; Noakes ). This theorem states that a de-
terministic dynamical system can be reconstructed from scalar-valued partial
measurements of the system. In other words, a well-chosen information state
(see Section 7.1.2) can be used to reconstruct, up to a diffeomorphism (Fejoz

), the manifold on which the system evolves (thus the geometry is not pre-
served while the ergodic statistics are) (Coudéne ). This resultis also known
as the delay embedding theorem because the information state is defined as a
finite size rolling window of the history process. The size of this window is called
the embedding dimension and is strictly greater than twice the dimension of
the system attractor. A stochastic version of the Takens' theorem is given in
Baranski, Gutman, and Spiewak

5"Echoing the notion of information available to the agent or controller (see the footnotes
of Section 2.2), a sufficient statistic for a random process H; is a random variable ¢(H,) that
generates the same o-algebra as the history process. Consequently, conditioning on the infor-
mation state ¢(H;) is equivalent to conditioning on the history process H;. It is sufficient to
know the information state to reconstruct the possible events that can be identified from the
history process. The advantage of the information state is that it is of fixed dimension and does
not increase with time.
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7.1.3 Delay in Dynamical Systems

Delayed Dynamical systems can be seen as partially observable systems where
the observation may be the state of the system at a previous time. In this par-
ticular case of imperfect state information Bertsekas , it is natural to con-
struct information states based on the history of observations as discussed
in one of the seminal papers Kim and Jeong (see also Bertsekas . p.
35). Later on, White Il proves analytically that the observation history im-
proves performances. Bander and White shows a sufficient statistic in the
presence of observation delay is a specific belief state. M. Agarwal and Aggar-
wal ; W. Wang et al. use the delay information to construct augment
the state with a delay-aware window of the past history.

Some work explicitly constructs MDP from delayed MDP (Altman and Nain

; Katsikopoulos and Engelbrecht ; B. Chen et al. ).
Walsh et al. uses a model-based RL approach to handle observation
and rewards delays. Lancewicki, Rosenberg, and Mansour is the first study

that considers regret minimisation in the important setting of MDP with de-
layed feedbacks. This paper provides bounds and also considers adversarially
changing costs. To go further, Ramstedt et al. considers random delays in
the observation process.

7.2 Neural Controlled Delay Differential Equations

7.2.1 Vector Field Parameterisation

Considering a Partially Observed Differential equation as defined in Example
2.2.2.%2 For such a system, the state dynamics are characterised by the oper-
ator f and the observation dynamics by the operator g. Also, a parametric
hypothesis space 7; = ©y for the state dynamics and 7, = ©, for the obser-
vation dynamics are considered. The term Neural Controlled Delay Differential
Equations refers here to the deterministic differential equation obtained by pa-
rameterising the state and observation dynamics operators by 6y € ©; and
b, € ©,, respectively. In general, those parametrised models are neural archi-
tectures such as feedforward or convolutional neural networks. This leads to
the following system of equations:

Oy = fef (ﬂUu L7y, Ut) (7.1
and
Oy = Ge, (ﬁt, xt—7y7ut> (7.2)

where 6; € ©; and ¢, € 6, and the time delays 7y € R" and 7 € R* are fixed
and known. The time interval is finite and given by I = [t, 7] with T < co. A

%2The system need not to be necessarily defined on the whole space R%x x R4x x R put
on any open set of X x X x U, where the equation is well-defined.
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solution®3 of the neural differential equation above is denoted by (2),c; where
¢ € Oy for the state and a similar notation is used for the observation.

Henceforth, in this work and more generally in the field of Physics Informed
Machine Learning (Karniadakis et al. ), neural differential equations are po-
sitioned within the domain of system identification (Ljung ). Actually, re-
cent efforts (Ayed et al. ; Rackauckas et al. ; Menier et al. ; Monsel
et al. ) have been made to apply neural differential models for modelling
physical systems, particularly those of computational fluid dynamics. In the
control context, they pertain to the category of model-based methods (see Sec-
tion 3.3.1).

As a matter of fact, it is worth mentioning that the neural differential equa-
tion approach was originally designed to approximate and abstract very deep
neural networks. The following remark gives details about the origins of the
method.

Remark 7.2.1. During the early days of modern deep learning for computer vision,
neural architectures became increasingly deep (Simonyan and Zisserman ).
However, a degradation problem has been exposed: the model accuracy saturates
and degrades as the network depth increases. To overcome this issue, the ResNet
architecture was introduced (He et al. ). The heart of the ResNet architecture is
the residual block defined as

Tip1 = Tp + J?j,af () (7.3)

where f;q, is the j-th residual layer (or block of layers) with parameters 0. Given
an input data point x, the output x7 of the ResNet model is obtained by propagat-
ing the input through the residual layers together with the remaining layers of the
network.

On the other hand, when discretising a Markovian and non-controlled version
of the state dynamics given by Eq. (7.1) with an Euler scheme, the following equation
is obtained:

Tir1 = x4 + 0 fo, (1) (7.4)

where ¢ is the time step of the Euler scheme. If the time step is absorbed by the
model fjﬁ ; In Eq. (7.4), the residual block in Eq. (7.3) is recovered. Thus, for a
neural differential equation with a fixed time horizon T, the time step of the Euler
scheme controls the depth of the neural network. This way, neural network archi-
tectures and vector fields maintain a close relationship. A data point is propagated
through the neural network layers in a similar way as a point following the flow de-
fined by a vector field. The seminal Neural Ordinary Differential Equation (NODE)
model (R. T. Q. Chen et al. ) paved the way for this connection.

63The existence of the solution should be guaranteed when the control and the operators
are continuous w.r.t. time. For a non-continuous control or the uniqueness question, a com-
bination of the general version of the Cauchy-Lipschitz theorem (Trélat ) with its delay
differential equation version (Hale ) is required.
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The neural differential equation approach was initiated by R. T. Q. Chen et
al. . The PhD thesis Kidger provides a comprehensive manual on the
subject.

The neural differential equation approach combines several advantages.
First, it benefits from the approximation power of neural networks. Second,
it allows for a memory-efficient gradient computation. Third, it benefits from
the strong theoretical understanding of differential equations.

7.2.2 About Optimisation

Learning Task

The optimisation is described for state dynamics learning but is equivalent for
observation dynamics. The learning task is defined by the L? distance between
a piece of trajectory (w;);c; issued from the neural vector field f,, and its cor-
responding true trajectory (z;);c;» determined by the target operator f, where
I' C I. Formally, the loss function is defined as

(@ s fo) = N@)eer — (27 eer 2oy = / (w0 —af)?dt  (7.5)
[l

where || - ||12(;1) denotes the L? norm over the time interval I'.

The learning task being defined, a generalisation error (called risk) needs to
be introduced. To this end, a distribution over pieces of trajectories is consid-
ered and denoted by P

($t)tel’ :

£ (P e for) =B et [0 ((@)ierr - fo)] (7.6)

Of course, in practice the distribution P,,),_, is unknown. A frequentist esti-
mation (see Section 3.2.3) of this distribution is obtained by sampling pieces
of trajectories from the true dynamics. These trajectories form a dataset D =
{(x“)tep}Z . Where K € N*is the number of samples. An empirical distribu-
tion P(It)teb = % Ly~ O(z,.0),c, 1S then obtained. Moreover, the integral over
time characterising the L? metric in Eq. (7.5) is approximated by a Riemann
sum (see Remark 2.4.3) with N € N* rectangles of width §;, = t;41 — tx. The
empirical risk is then defined as

N K
SN 1
L <P(1‘t)tell7 f@f) = ? Z Z 5tk (xk‘,i - xZil)Q (7.7)

i=1 k=1

where z;; denotes the state of the system at time ¢, € I’ for any i € [1, K]

and partition (tk)ffzo (more precisely, this sampling and discretisation scheme
corresponds to the procedure described in Section 2.3 with the compatibility

condition of Section 2.5). Similarly, the point xzfz € X is the state of the system
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at time ¢, for the neural vector field f.. In practice, trajectories are obtained
by numerical integration (specifically delay differential equation solvers if the
system is not Markovian).

Remark 7.2.2. The optimisation procedure has been explained for the state dy-
namics fq,. The same procedure is applied for the observation dynamics gs,. De-
pending on the context, whether the state or observation dynamics are learned, the
loss function L is defined accordingly. In practice, the observation dynamics are
learned since the state dynamics are unknown. There is no work yet on learning
both the state and observation dynamics simultaneously.

Now, the question of the optimisation of the neural differential equation is
addressed. The optimisation is performed by ordinary gradient descent.

The Adjoint State Method

There exists an elegantway duetoR. T. Q. Chen et al. , and extended by Zhu,
Guo, and W. Lin in the delayed case, for deriving the risk gradient without
the need for the backpropagation ngﬁ(@(xt)tg,, fo;) with respect to the weights
0r of the neural operator fy,. Indeed, Remark 2.2.12 already discussed how a
control problem can be seen as a constrained minimisation problem where
the objective function is the generalisation error and the constraints are the
differential equations. Expanding this point of view, a Lagrangian formulation
of the problem is obtained. This Lagrangian is defined as

<z ((xt)tel' J (/\zg})te[’ ’9f> =L ((It)tel’ >f9f) +/ /\fp (atxt - fef (2t Te—r, ut))dt

I

(7.8)
Without going too much into details, a dual formulation of this constrained
minimisation problem can be obtained (McNamara et al. ; Stephany et
al. ). The Lagrange multipliers (\?),c» describe trajectories that satisfy
some differential equation with terminal condition. Thus, these equations are
solved backwards in time. The variable \? for any t € I’ is called the adjoint
state.® Finally, the gradient ngﬁ(@(xt)tel,, fo;) is a function of the adjoint state
trajectories and the state trajectories.

Additionally, this method can also be obtained from a result in optimal con-
trol theory called the Pontryagin Maximum Principle (PMP) (Trélat ). In this
case, the weights 6; are considered as another control parameter (u})cr = 6y,
and the adjoint equations arise as a consequence of the PMP.

The advantage of this method, which is underlined in R. T. Q. Chen et al.

, Is the non-necessity of storing the trajectory values during the forward
computation of the trajectory to compute the objective gradient, while stan-
dard backpropagation requires the storage of these values. A drawback is the

®4The term adjoint refers to the adjoint operator linked to the dual problem formula-
tion (Hiriart-Urruty and Lemarechal ).
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need to solve the adjoint equation, that depends on the backward integration
of the state dynamics. This leads two choices: either storing the state values
during the forward computation or recompute them during the backward inte-
gration. If the recomputation is chosen, the difference between the backward
and forward integration of the state dynamics induces inaccuracies in the gra-
dient computation. An extensive description and comparison with the more
standard backpropagation through solver method is given in Kidger . The
backpropagation through solver method is introduced in the next section.

Backpropagation through solver

On the other hand, if the numerical solver used to integrate the differential
equation is differentiable (is a composition of differentiable operations), then
any automatic differentiation library can be used to compute the risk gradi-
ent ngﬁ(@(mt)te[,, fo;). This method is called backpropagation through solver
and despite being less memory-efficient than the adjoint state method, it is
more stable and faster because of the advances in automatic differentiation
libraries (Bradbury et al. ; Ansel et al. ) and the exact computation of
the gradient.

7.3 A Data-Driven Approach to Continuous-Time
Flow Control

A promising data-driven approach in continuous-time data-driven control can
be built on the concepts and models presented in the first sections of this chap-
ter (Sections 7.1.1-7.1.2-7.1.3) . Surely, the resulting method would be model-
based, i.e. leveraging the features carried by the neural differential model to
perform reliable control procedures.

Here, a reliable control should be understood as an algorithm based on a
neural differential model that handles most of the main challenges of Flow Con-
trol enumerated in the introduction of this manuscript 1. Ideally, the method
covers all those challenges. Though, the work presented here deals only with
one of these issues: the presence of a delay in the state or observation dynam-
ics. The other challenges are left for future work.

7.3.1 Programme for a Neural Differential Control Algorithm

As stated in Section 7.1, this project builds principally on two previous studies
on learning-based continuous time control.
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Neural Differential Continuous-Time Reinforcement Learning

First, the article Yildiz, Heinonen, and Lahdesmaki where a model based
continuous-time reinforcement learning approach is defined to improve ro-
bustness to irregular sampling times. From that work, two essential method-
ological steps are retained in order to construct a programme for a reliable
neural differential control algorithm. Of course, modelling the system dynam-
ics with a neural differential equation is the first step. The second step, which
is more involved, is to solve the Bellman equation with an actor-critic scheme.
The resolution of this continuous-time Bellman equation (a.k.a. the Dynamics
Programming Principle (DPP) in continuous time, see Section 2.2.6) is the most
challenging part of the programme since the formulation of the DPP is not
straightforward for time-delayed systems.®5

A Neural Operator for Delayed Systems and Model Predictive Control

Second, the work of S. I. Holt, Qian, and Schaar treats systems with ob-
servation delays and learns offline a neural differential representation of the
dynamics to perform model predictive control. The model predictive control
part is retained here as a way to ensure the quality of the learnt model, with-
out caring about actor or critic training. However, this approach is inherently
less computationally efficient than an actor-critic scheme because it requires
solving an optimisation problem at each decision instant. On the other hand, it
may require less data since no reinforcement learning is involved. Thus, those
two approaches are complementary and can be somehow combined to build
a reliable control algorithm.

Programme Details

Accordingly, a programme for a neural differential control algorithm can be
defined as follows:

1. Modelling delayed and partially observed systems with a neural control-
led delay differential equation.

2. Apply Model Predictive Control with the learnt model.

3. Adopt the continuous-time reinforcement learning approach to learn a
policy and obtain an end-to-end learning-based control algorithm.

Only the first step is treated in this thesis while the two others are left for
future work. The first item naturally extends previous studies on NDDE (Zhu,
Guo, and W. Lin ; Monsel et al. ; Stephany et al. ) by introducing

®5Not to mention that there is no Q-learning in continuous time since the state-action Q-
function collapses to the state value function (Tallec, Blier, and Ollivier ; Wiltzer et al. ).
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a exogenous control input to the learning procedure. The last two elements of
the programme trigger many questions and challenges. For instance, the MPC
procedure needs to be adapted to delayed systems and continuous-time con-
trol. Also, the reinforcement learning approach should be adapted to the de-
layed and partially observed case while Deep Reinforcement Learning is mostly
designed for Markov Decision Processes (MDP). Moreover, Neural Differential
Models exhibit complex training dynamics (Kidger ) and the convergence
of the learning algorithm is not guaranteed.

7.3.2 Modelling Delayed and Partially Observed Systems

This part of the thesis is dedicated to the first item of the programme for a
neural differential control algorithm (see Section 7.3.1). The construction of a
proper neural model for delayed and partially observed systems requires a pro-
gressive curriculum of questions that aim to validate the underlying features
that are supposed to be captured by the model.

Question and Hypothesis

The following questions are addressed:

+ Are the NDDE models (not necessarily controlled) more accurate approx-
imators for standard dynamical systems than the classical NODE model?

+ Does the information provided by the control input improve the approxi-
mation of the controlled dynamics?

* Do the NDDE models handle the delay in the state dynamics better than
the NODE models?

* How the neural differential models perform against Flow Control sensors
signals?

The first point verifies the claims of the seminal paper Zhu, Guo, and W. Lin
that proves NDDE are better approximators than NODE (in the sense of the
quantity of functions that can be approximated). The second aims to validate
the natural hypothesis that the control information improves the approxima-
tion of the dynamics. This serves also as a sanity check for the control input
implementation which is not trivial The third question verifies the hypothesis
that the delay in the state dynamics is better handled by NDDE models than
NODE models. The last question is a first step towards an application in Flow
Control.
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7.4 Experiments

In order to answer the questions raised in the previous section, a series of ex-
periments are conducted. Basically, they consist in training neural differential
models on trajectory data generated by a controlled dynamical system under
different configurations (e.g. the time delay value).

7-4.1 Ablation Study

All the optimisation procedures (a.k.a. training or learning processes) are car-
ried out with the Adam optimiser (Kingma and Ba ). When the system is
partially observed, the learning task is defined on the observation dynamics.
Four variants of the Neural Controlled Delay Differential Equation (NCDDE) mo-
del are trained in order to marginally extract information on the effect of the
control input and the delay in the state dynamics. Typically, this approach is
called an ablation study in the machine learning community. Concretely, the
following models are considered:

+ the Neural Ordinary Differential Equation (NODE) model which considers
a Markovian system without delay, and no control input in Eq. (7.1) for the
state dynamics or Eq. (7.2) for the observation dynamics.

+ the Neural Controlled Differential Equation (NCDE) model which consid-
ers a markovian system without delay, and a control input.

+ the Neural Delay Differential Equation (NDDE) model which considers a
non-markovian system with delay, and no control input.

+ the Neural Controlled Delay Differential Equation (NCDDE) model which
considers a non-markovian system with delay, and a control input.

In view of answering the above questions by training neural differential
models on well-chosen dynamical systems, multiple time series datasets are
generated from different dynamical systems.

Finally, note that the objects and quantity considered here, in particular the
delays, are considered continuous. The value of the dynamics for incompatible
sampling times are estimated by linear interpolation (see Remark 2.4.2).

7.4.2 Time Series Dataset

A sampling procedure is performed to collect a dataset D = ((x¢ut;)ier)i™; Of
time series for every dynamical system configuration. All time series are gen-
erated by numerical integration (see Section 2.4) of the differential equations
associated with the dynamical systems. In practice the elements of D are finite
dimensional vectors of dimension K x (dx + dy) where dx € N* is the state
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dimension, dy € N* is the control dimension that may result from the discreti-
sation of the state space & or the control space U/ (see Section 3.4). The integer
K € N*is the number of measurements extracted from a continuous signal.
The sampling times (see Section 2.3 and Definition 2.3.3) are equidistant with a
time step (inter-decision time) of n € R*. The number of time series samples
is m € N*. Those trajectories are initialised from a random initial condition
determined by a collection of probability distributions (Px, ;). on the initial
conditions of the dynamical system. Indeed, in practice the distribution of the
m-th initial condition depends on the distribution of the previous trajectory.
The typical example used both in the literature and this work is when the next
initial condition is the last state of the previous trajectory. In fact, using the
latter distribution could be a way to ensure the ergodicity (Benoist and Paulin
; Leroux ) of the dataset and the dynamical system.

Here, except for the Cavity Flow that is computationally expensive, the num-
ber of measurements is K = 200 (regularly spaced in time with a time step of
n = 1072 that depends on the dynamical system) and the number of trajecto-
ries in the dataset D is m = 400. Finally, each of the configurations is trained
over two random seeds. Qualitatively, the variation of the training dynamics
over independent runs are much less important than what can be observed in
deep reinforcement learning.

The different dynamical systems and their configuration is now presented.

Oscillators with Observation Delays

Two oscillators are considered: the Pendulum (see Section 3.4.4) and the Van
der Pol oscillator (see Section 3.4.5). For each environment, m = 400 trajecto-
ries are generated. The distribution of the initial point is the standard distribu-
tion used throughout the thesis (see Section 5.3.2): Py, ; ~ N (z., c2l,, ) for all
i € [1,m]. Thus, the initial conditions are i.i.d.. The starting equilibrium is the
bottom point for the pendulum and the zero point for the Van der Pol oscillator
(z. = (0,0) in both cases). The noise level on the initial condition is o, = 1071,

The control signal® is generated by a random process (U ;)ic; where Uy ; ~
Unif(i) forallt € I and i € [1,m].

Each environment comes in several configurations with different observa-
tion delays 7y € {0,1072,107'}. The observation operator g of the pendulum
is the standard trigonometric representation of the angle and angular veloc-
ity. The observation operator of the Van der Pol oscillator is the observation
shift operator. At time ¢ € I, the observation operator is defined as (by a slight
abuse of notation) v = ¢(y:—, ) Where g = Id,, for the Van der Pol oscillator
and similarly for the pendulum (under the trigonometric representation). Thus,
three configurations are considered for each oscillator.

®6This choice of control, which inherits from the discrete time approach, has been identified
as a very bad choice a posteriori. Indeed, it results in a control signal that is nowhere continuous
and thus may lead to very inaccurate path approximations within the vector field.
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This choice creates a lag between an action and the observation of its effect.
Itis suitable for the study of the impact of observation delays on the neural dif-
ferential models. A visualisation of inference for all the models on a trajectory
drawn from the dataset is given in Figures 7.2 and 7.3.

Delayed Differential Equation

It also interesting to consider a simple delayed differential equation. The Ma-
ckey Glass equation (see Section 3.4.6) is a standard example of this kind of
system. Instead of taking observation delays, the system state differential is
now a function of a past state prescribed by a delay 7x = 1. The parameters of
the Mackey-Glass equation are defined given in Section 3.4.6. Hence, no direct
action lag should characterise the dynamics but only a feedback effect from a
past state at a fixed delay.

Two choices of initial conditions are considered. First, Px,; ~ N (z., 0214, )
with ., € X = R the non-trivial equilibrium point and o, = 1072. The inter-
decision time is = 10~'. Second, the initial condition for trajectory i € [1,m]
is the last state of trajectory i — 1 (deterministic law) with the distribution being
the same as the previous case for i = 0. This choice corresponds to the ergodic
hypothesis of the dataset where a long trajectory is considered as a good ap-
proximation of the stationary distribution of the dynamical system. Moreover,
two choices of action spaces are selected, 4 = {0} and 4 = [-1071,1071].

Figure 7.5 shows the inference of the models on a trajectory drawn from
the dataset.

Fluid Flows

The last environments studied are typical 2-dimensional fluid flows that are
used in the literature on flow control, namely the Cylinder Flow (see Section
3.4.7), the Fluidic Pinball (see Section 3.4.7) and the Cavity Flow (see Section
3.4.7). All those systems are driven by the Navier-Stokes equations (Eq. 2.13)
but their domain of definition and boundary conditions (geometry) differ to
match the physical setup of the experiments. Moreover, the control input is
embedded in the boundary conditions of the fluid flow to mimic real-world
setups.

Fluid flows are governed by the Navier-Stokes equations. From this equa-
tion, a dimensionless®” quantity denoted Re € R’ called the Reynolds num-
ber is derived (Candel ; Chassaing ). Broadly, the Reynolds number
characterises the ratio of inertial forces (velocity) to viscous forces in the fluid
flow. The higher the Reynolds number, the more turbulent (Lumley and Blossey

) (thus chaotic and complex), the flow is. Consequently, different Reynolds
numbers are considered for each fluid flow. For the Cylinder and the Pinball

67Being dimensionless, this number allows for the comparison between the dynamics of dif-
ferent fluid flows.
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flows, Re € {50, 90, 105, 120}. This choice is inspired by the route to chaos paper
of Deng et al. . For the Cavity flow, Re € {500, 5000, 7500} which is inspired
by the work of Barbagallo, Schmid, and Huerre

Regarding the initial states, independent trajectories are generated from a
random initial condition drawn from the standard normal distribution around
the equilibrium flow (called steady-state flow).

In the same way as the Mackey-Glass equation, two choices of control mag-
nitude are selected. The zero control and &/ = [-1072,1072.

Note that being computationally expensive, the models for the Cavity Flow
are trained with m = 40.

7.4.3 Results
Approximation Capability

The first question in Section 7.3.2 discusses the expressive power of the delay
differential equation extension of the neural differential model to learn the dy-
namics of the dynamical systems. For this task, it should be enough to focus
on the uncontrolled dynamics whether by analysing the environment configu-
rations where &/ = {0} or simply restricting the comparison to the NODE and
NDDE models.

Despite performing quantitatively better in Figure 7.1, concluding towards
an advantage for NDDE is not really fair since the trajectory data for this ex-
periment is perturbed by a control signal which is not intended to be captured
by the two models. In addition, the observation delay introduced should bias
the comparison in favour of the delay-based model. On the other hand, Fluid
Flows (7.4.2) and the Mackey-Glass equation (7.4.2) are more suitable for this
comparison as configurations with no control are considered.

The uncontrolled version of the Cylinder Flow in Figure 7.6 and more signifi-
cantly the uncontrolled version of the Fluidic Pinball in Figure 7.7 show that for
uncontrolled trajectories, the NDDE performs better than the NODE model.

Regarding Mackey-Glass (Figure 7.4), the neural model based on ordinary
differential equations is not able to capture the dynamics of the system while
the NDDE model is able to approximate the system dynamics when the initial
conditions are drawn from the stationary distribution. Here, the performance
is given in the standard learning theory sense specified in Section 7.2.2.

Hence, this experiment provides empirical evidence on the approximation
power of neural differential dynamics incorporating time delays. Those two
fluid flows are partially observed. Thus, the arguments developed in Section
7.1.2 and Section 7.1.2 could justify this performance spread.
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Control Information

The second question mentioned in the list of hypothesis aims at evaluating
the utility of incorporating the control signal to the neural model in order to
approximate controlled differential equations.

Recall that the control injected in the dynamics is open-loop (see Section
2.2.1). Consequently, the observation and control signals are independent; they
share no information® (then their mutual information is equal to zero, by in-
dependence). This point of view notably argues that feedback controls (Defini-
tions 2.2.5 and 2.2.10) signals intrinsically add less information than open loop
controls. This choice ensures that the control signal is not redundant with the
observation signal.

Closing this parenthesis on information, the NODE baseline should be com-
pared with its NCDE extension on controlled dynamics for judging the impact
of the control information on the resulting approximations. Comparing dark
(NODE) and light (NCDE) green training and validation curves in Figure 7.1 and,
with much less importance, in Figure 7.7, the impact of feeding the control
signal to the model on the training and validation losses is clearly observed.
Additionally, Figures 7.6 and 7.7 show near performances when &/ = {0}. In
the case of Mackey-Glass (Figure 7.4), the comparison between the NODE and
NCDE models is not relevant since the ordinary differential equation models
are not able to capture the dynamics of the system, regardless of the choice
of initial conditions. However, considering delayed models, it can be observed
that the NDDE model performs better than the NCDD model in the absence
of control. An inverted behaviour is observed in the presence of control. This
supports the hypothesis that the controlled models capture the control signal
information.

Delays

The third line of analysis is devoted to the model performance in the presence
of delays over the dynamics.

Figure 7.1 shows that NCDDE, at best, surpasses NCDE in modelling con-
trolled dynamics with observation delays (middle and right columns), and at
worst, achieves equal performances. However, it is not clear and probably un-
likely that this performance is intrinsically due to the proper delay modelling in
NDDE dynamics.

Indeed, recent results show non-interpretable delay values in general set-
tings Monsel et al. . Rather, the observation signal approximation may be
improved by the state augmentation design of NDDE (Zhu shows NDDE can
approximate functions that are not learnable with NODE).

%8Again, viewing the information in terms of o-algebras, this means the o-algebra generated
by the observation process is independant of the one generated by the control process.
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However, when the delay is relatively high (top right graph) clearly both
NCDDE and NDDE models outperform the others. In this configuration, the
NDDE becomes the second best model despite being agnostic to the control
signal. This suggests more information is carried by the delay than the control
here.

When looking at the results for the delayed Mackey-Glass equation (Fig-
ure 7.4), only the delay-based models are able to capture the dynamics of the
system, regardless of the choice of initial conditions.

Consequently, while DDE achieve better performances in modelling, the rea-
son for such performance is still not understood and more work is expected in
this direction. Definitely, interpretability is a key in the understanding of the
neural differential models.

Fluid Flows

The last question deals with the ability of the neural differential models to ap-
proximate signals from fluid flow simulations.

Especially in the case of the Pinball flow (Figure 3.4.7), the NCDDE model
achieves promising results in the uncontrolled cases. The Cylinder flow signal
is also correctly approximated.

In general, all models fail to learn the time series where a non-zero control
inputis applied. The first hypothesis behind such a behaviour is the irregularity
of the control signal (nowhere continuous) which is transmitted to the observa-
tion signal.

Investigations show that the control process is not damped from the con-
troller to the sensor (causal relationship). Thus, the resulting fields to be learnt
are very irregular. Another round of experiments with a smoother control sig-
nal is planned to confirm this hypothesis.

Regarding the Cavity flow, even without control, the observation signal is
chaotic and very stiff with high frequencies.

Further work is planned to investigate the impact of the control signal on
the observation signal in the fluid flow environments.

7.5 Conclusion

This final part of the thesis presents preliminary results in the domain of contin-
uous time learning based control for partially observed and delayed dynamics.

The elements presented are part of a larger programme devoted to an au-
tonomous learning scheme for fluid flow control. Notably, the Neural Contro-
lled Delay Differential Equations model that is introduced achieves promising
results in the presence of observation delays.

The control signal is shown to improve the approximation of the perturbed
dynamics. However, the impact of the delay in the state dynamics is not yet
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Figure 7.1: Training dynamics of the neural differential models under several observa-
tion delays 7y for the Van der Pol and the Pendulum environments. The x-axis rep-
resents the training epochs. The y-axis is the empirical training loss L. Dashed lines
represent the empirical validation loss. Rows: Van der Pol (top); Pendulum (bottom).
Columns: 7y € {0,1072,10~ '} (from left to right). Green curves are delay-based mod-
els. Blue curves are the baseline models. Lighter tones are their controlled version.
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fully understood. Thus, more investigations should be carried out on the sole
modelling part. In particular, understanding the real behaviour of the learnable
delays, reducing the sample complexity.
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8.1

Conclusion

Addressing the Open Challenges in
Learning based Control for Fluid Flows

The work presented in this thesis addresses a significant part of the open chal-
lenges in Learning-based control for fluid flows (see Section 1.4.1).
Notably, it develops the following contributions:

8.2

An extended presentation of the connection between the fields of Sto-
chastic Control and discrete Markov Decision Process (Chapter 2) leading
to the discrete Dynamic Programming Principle used in Reinforcement
Learning (Chapter 3)

The introduction of temporal abstraction in the learning process coming
from the distinction between decision time and the physical time (Chap-
ter 3, Chapter 5 and Chapter 7)

The study of the impact of the maximum policy entropy principle on the
robustness to noise and the regularisation of the policy distribution (Chap-
ter 4)

An application of a distributional perspective in Reinforcement Learning
to chaotic dynamics which increases the learning speed (Chapter 6)

The modelling of dynamics with state-of-the-art continuous-time neural
differential models (Chapter 7)

Unification of concurrent fields

Furthermore, this work is a step towards the unification of Stochastic Control,
Reinforcement Learning, Information Theory and Flow Control (Chapters 2 and
3). It aims to provide a modern approach to the control of fluid flows by clarify-
ing the potential links between these domains.

The thesis also showcases the different point of views (deterministic vs. sto-
chastic; discrete vs. continuous) available to perform learning-based control of
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dynamical systems. Incorporating methods from these different perspectives
could lead to more robust and efficient solutions.

8.3 A Multidisciplinary Approach

Moreover, this thesis tries to incorporate the most recent advances in the field
of Learning-based Control and Machine Learning to enlarge the set of tools
available for the control of fluid flows. It borrows ideas and algorithms from
the robotics-oriented Learning-based Control community®® to address the spe-
cific challenges of fluid flows. Additionally, a wide range of domains is covered:
Information Theory (Chapters 4 and 5), Statistical Learning (Chapter 4), Delay
Differential Equations (Chapter 7), Optimal Transport (Chapter 6), Control and
Fluid Dynamics. The thesis aims to provide the necessary framework to com-
bine these domains and to propose a modern approach to the control of fluid
flows.

8.4 Further Research Directions

The presented work opens several research directions. A broad description of
those directions is given here. More specific ideas are given at the end of the
related chapters.

First, the use of the maximum entropy principle in the context of fluid flows
is a promising approach to increase the robustness to noise of the control poli-
cies. As stated in the bibliography, other benefits could be expected from the
use of this principle in the context of fluid flows where the environments are
sensitive to small perturbations. Second, the use of Distributional Reinforce-
ment Learning to control chaotic dynamics is a novel approach that could be ex-
tended to more complex systems. Plus, the distributional nature of the model
could be used to quantify risk and uncertainty in the context of safety-critical
systems. Third, the concepts of information-based acquisition functions for ac-
tive data selection could be extended to fluid flows to increase the efficiency of
the learning process. Last, the use of continuous-time neural differential mod-
els for the control of fluid flows is a promising approach which could discard
the dependence of the algorithm on the discretisation of the dynamics while
adding temporal abstraction. Moreover, the delay differential equations meth-
ods could be improved to learn interpretable delays.

Finally, the construction of an algorithm able to combine those features
would be a significant step towards the control of fluid flows with Learning-
based Control. Ideally, the algorithm would combine safe system exploration
of a real-world system, together with a careful data selection from a database

®9For instance, the use of the maximum entropy principle in Deep Reinforcement Learning
and the base paper for Chapter 5 are from resarch groups in robotics.
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in order to learn a model of the system efficiently and derive a robust control
policy. With a large enough database, the algorithm should first be able to iden-
tify the right model for the system, then learn a policy that is robust to noise
and uncertainty.
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Synthese en francgais

Les impératifs environnementaux suscitent un regain d'intérét pour la recher-
che sur le contrdle de I'écoulement des fluides afin de réduire la consommation
d'énergie et les émissions dans diverses applications telles que I'aéronautique
et 'automobile. Les stratégies de contrble des fluides peuvent optimiser le
systéme en temps réel, en tirant parti des mesures des capteurs et des mod-
éles physiques. Ces stratégies visent a manipuler le comportement d’'un sys-
téme pour atteindre un état souhaité (stabilité, performance, consommation
d'énergie).

Dans le méme temps, le développement d'approches de contrdle pilotées
par les données dans des domaines concurrents tels que les jeux et la robo-
tique a ouvert de nouvelles perspectives pour le contrdle des fluides.

Cependant, l'intégration du contréle basé sur 'apprentissage en dynamique
des fluides présente de nombreux défis, notamment en ce qui concerne la ro-
bustesse de la stratégie de contréle, I'efficacité de I'échantillon de l'algorithme
d'apprentissage, et la présence de retards de toute nature dans le systeme.

Ainsi, cette thése vise a étudier et a développer des stratégies de contrdle
basées sur I'apprentissage en tenant compte de ces défis, dans lesquels deux
classes principales de stratégies de contrdle basées sur les données sont con-
sidérées : I'apprentissage par renforcement (RL) et la commande prédictive
basée sur I'apprentissage (LB-MPC). De multiples contributions sont apportées
dans ce contexte.

Tout d’'abord, un développement étendu sur la connexion entre les domai-
nes du contrdle stochastique (temps continu) et du processus de décision de
Markov (temps discret) est fourni pour unifier les deux approches. Le systeme
entemps discret est alors vu comme un systéme en temps continu échantilloné.
Ce point de vue permet de donner un cadre général a I'étude des problemes
de contréle sur des systémes dynamiques en temps continu.

Deuxiemement, des preuves empiriques sur les propriétés de régularisa-
tion de l'algorithme d’apprentissage par renforcement par maximum d’entropie
sont présentées a travers des concepts d'apprentissage statistique pour mieux
comprendre la propriété de robustesse de 'approche par maximum d’entropie.
Plus précisément, deux mesures de complexité sont proposées pour prédire la
robustesse de la politique obtenue en fin d'apprentissage. La premiere quanti-
fie la régularité du réseau de neurones caractérisant la politique en majorant
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la constante de Lipschitz du modele neuronal. La seconde évalue la régularité
locale du paysage d'optimisation autour des paramétres de la politique en fin
de procédure d'optimisation, a l'aide d'une statistique basée sur 'information
de Fisher de la politique.

Troisiemement, la notion d'abstraction temporelle est utilisée pour améli-
orer I'efficacité de I'échantillonnage d'un algorithme de commande prédictive
par modele basé sur I'apprentissage et piloté par une regle d'échantillonnage
de la théorie de I'information. De maniere plus précise, une fonction d'acquisi-
tion de donnée basée sur l'information mutuelle est étendue au cas ou le temps
d'inter-échantillonnage devient aussi une variable de décision. Lintroduction
de cette variable de décision permet d'augmenter la quantité d'information ac-
quise par la procédure d'échantillonnage, ce qui améliore la performance de
I'algorithme de commande prédictive basé sur l'apprentissage.

Enfin, les modéles différentiels neuronaux sont introduits a travers le con-
cept d'équations différentielles neuronales a retard pour modéliser des sys-
témes a temps continu avec des retards pour des applications en commande
prédictive. Les modeéles neuronaux a retard montrent de meilleures perfor-
mances de regression face aux modeéles témoins.

Les différentes études sont développées a l'aide de simulations numériques
appliquées a des systemes minimalistes issus des théories des systemes dy-
namiques et du contrdle afin d'illustrer les résultats théoriques. Les expéri-
ences de la derniére partie sont également menées sur des simulations d'écou-
lement de fluides en 2D.
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