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Résumé: Les impératifs environnementaux
suscitent un regain d’intérêt pour la recher-
che sur le contrôle de l’écoulement des fluides
afin de réduire la consommation d’énergie et
les émissions dans diverses applications telles
que l’aéronautique et l’automobile. Les straté-
gies de contrôle des fluides peuvent optimiser
le système en temps réel, en tirant parti des
mesures des capteurs et des modèles physiques.
Ces stratégies visent à manipuler le comporte-
ment d’un système pour atteindre un état
souhaité (stabilité, performance, consommation
d’énergie).

Dans le même temps, le développement
d’approches de contrôle pilotées par les don-
nées dans des domaines concurrents tels que
les jeux et la robotique a ouvert de nouvelles
perspectives pour le contrôle des fluides.

Cependant, l’intégration du contrôle basé
sur l’apprentissage en dynamique des fluides
présente de nombreux défis, notamment en ce
qui concerne la robustesse de la stratégie de con-
trôle, l’efficacité de l’échantillon de l’algorithme
d’apprentissage, et la présence de retards de
toute nature dans le système.

Ainsi, cette thèse vise à étudier et à
développer des stratégies de contrôle basées
sur l’apprentissage en tenant compte de ces
défis, dans lesquels deux classes principales de
stratégies de contrôle basées sur les données
sont considérées : l’apprentissage par renforce-
ment (RL) et la commande prédictive basée sur
l’apprentissage (LB-MPC). De multiples contri-

butions sont apportées dans ce contexte.
Tout d’abord, un développement étendu sur

la connexion entre les domaines du contrôle
stochastique (temps continu) et du processus
de décision de Markov (temps discret) est fourni
pour unifier les deux approches.

Deuxièmement, des preuves empiriques sur
les propriétés de régularisation de l’algorithme
d’apprentissage par renforcement par maximum
d’entropie sont présentées à travers des con-
cepts d’apprentissage statistique pour mieux
comprendre la caractéristique de robustesse de
l’approche par maximum d’entropie.

Troisièmement, la notion d’abstraction tem-
porelle est utilisée pour améliorer l’efficacité de
l’échantillonnage d’un algorithme de commande
prédictive par modèle basé sur l’apprentissage
et piloté par une règle d’échantillonnage de la
théorie de l’information.

Enfin, les modèles différentiels neuronaux
sont introduits à travers le concept d’équations
différentielles neuronales à retard pour mod-
éliser des systèmes à temps continu avec des
retards pour des applications en commande pré-
dictive.

Les différentes études sont développées à
l’aide de simulations numériques appliquées à
des systèmes minimalistes issus des théories
des systèmes dynamiques et du contrôle afin
d’illustrer les résultats théoriques. Les expéri-
ences de la dernière partie sont également
menées sur des simulations d’écoulement de
fluides en 2D.



Title: On Learning-Based Control of Dynamical Systems
Keywords: Control, Reinforcement Learning, Model Predictve Control, Deep Learning, Dynam-
ical Systems, Flow Control

Abstract:
Environmental needs are driving renewed

research interest in fluid flow control to reduce
energy consumption and emissions in various ap-
plications such as aeronautics and automotive
industries. Flow control strategies can optimise
the system in real time, taking advantage of sen-
sor measurements and physical models. These
strategies aim at manipulating the behaviour of
a system to reach a desired state (e.g., stability,
performance, energy consumption).

Meanwhile, the development of data-driven
control approaches in concurrent areas such as
games and robotics has opened new perspec-
tives for flow control.

However, the integration of learning-based
control in fluid dynamics comes with multi-
ple challenges, including the robustness of the
control strategy, the sample efficiency of the
learning algorithm, and the presence of delays
of any nature in the system.

Thus, this thesis aims to study and develop
learning-based control strategies with respect to
these challenges where two main classes of data-
driven control strategies are considered: Rein-
forcement Learning (RL) and Learning-based
Model Predictive Control (LB-MPC). Multiple
contributions are made in this context.

First, an extended development on the con-
nection between the fields of (continuous-time)
Stochastic Control and (discrete-time) Markov
Decision Process is provided to bridge the gap
between the two approaches.

Second, empirical evidence on the regu-
larisation properties of the Maximum Entropy
Reinforcement Learning algorithm is presented
through statistical learning concepts to further
understand the robustness feature of the Maxi-
mum Entropy approach.

Third, the notion of temporal abstraction
is used to improve the sample efficiency of a
Learning-based Model Predictive Control algo-
rithm driven by an Information Theoretic sam-
pling rule.

Lastly, neural differential models are intro-
duced through the concept of Neural Delay Dif-
ferential Equations to model continuous-time
systems with delays for Model Predictive Con-
trol applications.

The different studies are developed with
numerical simulations applied on minimalistic
systems from Dynamical Systems and Control
theories to illustrate the theoretical results. The
training experiments of the last part are also
conducted on 2D fluid flow simulations.
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Preface

The humility, dedication, and knowledge of my teachers in the various fieldsof mathematics, statistics, economics, and computer science together with thepower of the abstract tools emerging from those theories to solve real-worldproblems have always fascinated me. This respect and admiration for scienceand scientists is a significant motivation for my choice to pursue a PhD. Be-ing part of the academic society and contributing to the scientific communityis a great honour. Undeniably, there are numerous benefits associated withpursuing doctoral studies.The reason for the choice of this thesis topic is not extraordinary. In 2016,the algorithm AlphaGo (Silver et al. 2016) achieved a major milestone in artifi-cial intelligence research by defeating the world champion Go player. Prior tothis, it was widely accepted that superhuman performances in Computer Gowere beyond the capabilities of existing technology. The algorithm employeda decision-making process based on Deep Learning known as ReinforcementLearning (RL) which is one of the core theories used in this thesis. This ap-proach is particularly important regarding the notion of autonomous learningand what is behind the idea of some agent “playing against itself” to improve.Thus, I got interested in the idea of contributing in the Learning-based Con-trol field. The application to the control of fluid flows is particularly interestingsince it opens the door to all the literature on Navier-Stokes equations and tur-bulence modelling.Regarding the document structure, several reasonsmotivated the chapters’order. The first chapter introduces the challenges relative to Learning-basedControl for Fluid Flows. The following two chapters introduce themathematicalframework of Stochastic Control from the continuous to discrete time setting.This allows for a unified view of the control problem that can be studied fromboth the discrete or continuous time angles. This set of chapters constitutesthe first part of the thesis.The second part of the thesis is dedicated to the methodological advancesin Learning-based Control. The two first chapters of this part form two inde-pendent contributions to the literature that led to two separate publicationsin conferences (the 7th International Conference in Optimization and Learn-ing (OLA24) in Dubrovnik (Hosseinkhan Boucher, Semeraro, andMathelin 2025)and the 6thAnnual Learning forDynamics&Control Conference (L4DC24) inOx-
9



ford (Hosseinkhan Boucher, Douka, et al. 2024)). The work presented in L4DCis a collaboration with Stella Douka, during her internship within our researchgroup. Last, the different work presented in the next two chapters are less ma-ture. The chapter on Distributional RL aggregates the results obtained duringthe first months of this global research project while the chapter on neural dif-ferential models is an ongoing work on continuous control. The conclusion isthe last chapter and concludes the thesis.
Finally, many people and institutions allowed me to prepare this projectsuccessfully. The next paragraph, written in French, acknowledges the set ofpeople and institutions that contributed, directly or indirectly, to this accom-plishment.

Avec l’ensemble des noms cités dans les remerciements ci-dessous, il estclairement possible de construire un graphe causal qui mène à la réalisationde ce projet de doctorat.Tout d’abord, je tiens à remercier les membres du jury, Ana Bušić, TristanCazenave, Laurent Cordier, Michèle Sebag, et Emmanuel Rachelson, pour avoiraccepté d’examiner ce travail de thèse et pour leurs retours constructifs. En-suite, je remercie chaleureusement mes encadrants, Lionel Mathelin, OnofrioSemeraro, et Anne Vilnat, pour leur soutien, leur patience, et leur expertise. Parailleurs, je remercie l’ensemble des chercheurs associés à ce projet de thèse, enparticulier Luc Pastur et Sergio Chibbaro.Je remercie aussi l’équipe d’encadrement de mon stage précédent la thèse,en particulier Michele Alessandro Bucci et Thibault Faney qui m’ont permis dem’initier au monde de la recherche académique et d’obtenir ce poste de doc-torant.Du côté des équipes de recherche, je remercie l’ensemble des membresde l’équipe Dataflot et plus largement le département mécanique-énergétiquedu LISN et plus particulièrement Caroline Nore, Anne Sergent, Yann Fraigneauet Didier Lucor. Je remercie également l’ensemble des membres de l’équipeInria TAU et plus particulièrement Michèle Sebag, Guillaume Charpiat, SylvainChevallier, Cyril Furtlehner, et François Landes.Au sein du laboratoire, je remercie l’équipe SAMI, notamment Laurent Poin-tal ainsi que l’équipe SPIL et le soutien quotidien de Romain Poirot. Je remercieaussi Christian pour ses discours quotidiens, dédiés (tous les jours à 16h) à ceque j’intègre OpenAI.Pour la gestion des calculateurs haute performance, je remercie Rémi La-croix et Loïc Estève pour l’IDRIS ainsi que Marco Léoni pour le mésocentre de l’Université Paris-Saclay.Du côté des équipes pédagogiques avec qui j’ai eu l’occasion de travailler, jeremercie Wassila Ouerdane (CentraleSupélec), Cécile Balkanski et Hélène Bon-neau (Université Paris-Saclay) ainsi que Guillaume Charpiat (CentraleSupélec).
10



Sinon, je remercie Charles-Albert Lehalle pour sa considération continue etses conseils avisés ainsi que Manfred Opper pour nos échanges constructifslors du workshop à Cambridge. Jared Callaham, pour son accompagnement àl’usage du projet Hydrogym.Je remercie d’ailleurs tous les chercheurs avec qui j’ai pu intéragir lors dema participations à divers conférences et séminaires, notamment Jonathan Ri-valan qui a largement égayé mon séjour à Dubrovnik, et Filipo Perotto pour sasympathie et son esprit positif.Pour ce qui est des institutions académiques, je remercie l’Université Paris-Saclay, l’ Université Paris-Dauphine PSL (Jimmy Lamboley, Alexandre Afgous-tidis, Jean-Paul. Tatiana Blondeel et bien d’autres), CentraleSupélec, l’Inria, etle CNRS.Pour les entresprises, je remercie Luxurynsight (Antoine Auer, Jean-LouisMargoche, Jonathan Siboni), Capital Fund Management (Romain Picon, GillesMasselot et bien d’autres), et BNP Paribas Real Estate (Samira Bouadi).
De l’autre côté, je remercie mes parents pour avoir soutenu ce long par-cours.Biensûr, je remercie tous mes co-doctorants qui ont contribué à rendrecette aventure plus agréable: Alice Lacan, Amine Saibi, Thibault Monsel, ManonVerbockhaven,MicheleQuattromini, Yanis Zatout, Stéphane Février, LucasMeyer,EmmanuelMenier, MathieuNastorg, ArthurGesla, SoufianeMrini, Nilo Schwencke,Melvin Creff, Nathan Carbonneau, Cyril, Cyriaque Rousselot, Rémi Bousquet,Romain Egelé, Sabrina Bernard, Gen.Je remercie aussi mon équipe: Paul Amavi pour l’appui sans faille, Faaf,Samy, Doris, Yassine Guida, Bosh, L’oiseau, Pinot, Babecity (Oliv’, Noé, Masco(ainsi que Massimo et Armelle), Micka (ainsi que Albert et Karina), Paulo, Be-ufa, Hédi, Lucas Santiago Stassart (ainsi que Fabienne), Seb, Jibé, Hakim, AmiralNelson (maire du 9ème), Hugo, Medy, Benjamin (Richemont) Richmond, Hovo,Camel, AD, Lio, Maxence, Alli). Mais aussi, Daniel Haïk, Josh Kaji, Théo De-schamps, Hippolyte Le Roy Mayard, Orginto, Florian Bastin, Hadrien Mariaccia,Abel Nana Kouamen, Arthur Buigues, Marvin Bryant, Régis Lopez Kaufmann,Antoine Auer (maire du 3ème), Luc Baz, coach Tao, Younes, Céline, Majda, Lan,MX et Mochy, MR, Lou, Jenny, la Cheeky Family, Viviane Armand, Jules Armand,Romain Hosseinkhan-Boucher. Housni Mkouboi, Alix Mathurin.
Paris, le 22 Février 2025,

Hosseinkhan-Boucher, Rémy

11



12



1 Introduction

1.1 Motivation

1.1.1 Environmental Needs
In many areas of engineering, environmental needs are driving renewed re-search interest. A prime example is carbon dioxide emissions, widely consid-ered to be one of the main causes of global warming (IPCC Core Writing Team,Lee, and Romero 2023). This urgency extends to many applications, includ-ing aeronautics, where it is recognised that optimising aerodynamic flows1 canhave a profound impact on reducing pollutant emissions and attenuating noise(Lumley and Blossey 2003). With this in mind, the role of flow control emergesas a crucial area of research, offering potential solutions to reduce energy lossand emissions.
1.1.2 Flow Control
In principle, flow control strategies (Ashill, Fulker, and Hackett 2005) can opti-mise the system in real time, taking advantage of sensor measurements andphysical models. These strategies aim at influencing the behaviour of a systemto reach a desired state (Trélat 2005). However, these techniques are currentlyonly used in limited numerical and experimental cases.

1.2 Learning

1.2.1 Machine Learning
Meanwhile, the increasing computational power and storage capacity of mod-ern computers allow for the development and scaling of data driven methodsthat weremostly restrained to theoretical solutions (Schmidhuber 2015). Thesemethods belong to the larger concept of Machine Learning (ML) (see the book

1Aerodynamic drag approximately counts for 20% of the total energy loss on modern heavyduty vehicles (Vernet et al. 2014).
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Mohri, Rostamizadeh, and Talwalkar 2018, for an introduction). Machine Learn-ing can crudely be described as the science of developing algorithms that con-struct correspondences in between objects (mappings) based on data.
1.2.2 Learning-based Control
The combination of this field with decision or control theory gives rise to the(still broad) sub-concept of Machine Learning Control (MLC) (Sutton and Barto2018; Duriez, Brunton, and Noack 2016; Bensoussan, Y. Li, et al. 2020; Meyn2022).2 In this work, this notion will also be referred to as Learning-based Con-trol.3 Two noteworthy expectations are set by this domain mixing computerscience, statistics, and control.
Approximation Power

First, physical modelling comes with simplifying hypothesis allowing for thederivation of closed-form, analytical formula. However, thesemodels are ofteninaccurate, especially in the presence of uncertainties or non-linearities. Theapproximation power of learning based models could overcome those limita-tions, leading to more accurate solutions.4
Discovering Control Strategies

Second, the discovery of some new control strategies achieving better perfor-mances can be expected. Such achievement has already been made in con-current domain of application such as games (Silver et al. 2016), computationalbiology (Jumper et al. 2021), and nuclear fusion (Degrave et al. 2022).

1.3 Control of Dynamical Systems

1.3.1 Dynamical Systems
As the title of this manuscript suggests, the work presented here deals with thecontrol of Dynamical Systems (Coudène 2013). This broad notion describes any

2The concept of Machine Learning Control is recent (e.g. the english Wikipedia page was cre-ated in April 2017 while the Reinforcement Learning page was created in 2002). As of today,no notable book chapter or review unifying the three concepts of Reinforcement Learning (RL),Learning-basedModel Predictive Control (MPC) and Genetic Programming (P. Fleming and Pur-shouse 2002) for control has been published. The RL and MPC fields are described in the nextfew paragraphs of this introduction.3Learning-based Control is the core topic of this manuscript. A more classical sub-topic isAdaptive Control (Åström and Wittenmark 1989) that considers iterative learning steps (estima-tion of a parametric model) to improve the control strategy.4This is often at the price of interpretability. Thus, solutions combining physical inductivebias and statistical approximation are nowdevelopped (see for instance Karniadakis et al. 2021).
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system endowedwith an evolution law that characterises the system transitionfrom one step to another. Thus, they encompass a large range of problems.However, the term dynamical systems should be understood in the sense ofthe dynamical system theory (Benoist and Paulin 2000; Viterbo 2009; Leroux2019) which was originally inspired by the description of dynamics related toPhysics andMechanics. The controlled systems considered in thiswork go fromsimple theoretical models to Fluid Dynamics problems.
1.3.2 Two Approaches to Learning-Based Control
This work distinguishes two related approaches to Learning-Based Control: Re-inforcement Learning and Learning Based Model Predictive Control.
Reinforcement Learning

Reinforcement Learning (RL) (Sutton and Barto 2018; Bertsekas and Tsitsiklis1996; A. Agarwal, Jiang, and Kakade 2019) constructs data-driven control strate-gies based on a so-called reinforcement signal collected through the interactionwith the environment (dynamical system).5 This signal is a scalar value thatquantifies the quality of the control input fed to the system. It can be seen asan instantaneous reward or a cost, depending on the problem.
Learning Based Model Predictive Control

Learning Based Model Predictive Control (MPC) (Aswani et al. 2013; Chua et al.2018; Koller et al. 2019; Hewing et al. 2020) is a more classical approach. Basi-cally, it combines amodel learnt fromdynamics data6with a planning algorithm.Planning can be defined as the process of selecting an optimal sequence ofcontrol inputs based on the model forward prediction and its associated rein-forcement signal.7 8
Several problems arise when considering the control of dynamical systemswith Learning-Based Control. The next section presents the problems and re-search objectives of this PhD.

5Thus, approaches like reward free RL (Touati and Ollivier 2021) are here excluded from theRL definition.6A major field of research in this domain is the identification of dynamical systems, termedSystem Identification (Ljung 1999).7Thus, LB-MPC making use of a reinforcement signal is a form of Reinforcement Learning.However, the distinction is made here to underline the model learning and planning aspectsof the algorithm.8In the context of General Artificial Intelligence, the model-based approach corresponds tothe concept ofWorld Models (Ha and Schmidhuber 2018) and the planning aspect is referred toas Imagination (Z. Lin et al. 2020).
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1.4 Problems and Research Objectives

1.4.1 Challenges in Learning-Based Control
Applications of Learning-Based control for Flow Control exhibit important chal-lenges (Viquerat et al. 2022), such as:

• Sample efficiency: Flow control experiments are expensive and time con-suming. Moreover, Learning-Based Control algorithms, such as Deep Re-inforcement Learning (DRL), require a large amount of data (Plaat 2022).
• Robustness: Fluid dynamics are often non-stationary, chaotic, noisy or sen-sitive to parameters. The control strategy learnt must be robust to theseperturbations.
• Partial observability: Sensors are noisy and limited. The control strategyshould handle this partial information to achieve desired performances.
• Delays: As the environments are partially observable (PO), the feedbacksignals may be delayed (post-control delay). In real-world applications,the control inference is not instantaneous (pre-control delay). The controlstrategy should handle these delays.
References to these issues are made throughout the document. The workpresented in this manuscript aims at addressing some of these issues througha series of research projects.

1.4.2 Research Objectives
Therefore, the research objective of this PhD is to extend knowledge on theseopen-questions while contributing beyond the field of flow control. Each of theresearch projects presented in thismanuscript addresses one of the challengesmentioned above with more or less emphasis.As the introduction so far suggests, the work presented in this manuscriptis multidisciplinary. Thus, a broad range of concepts and tools are used, bor-rowed from the fields of control theory, machine learning, statistics, and fluiddynamics.

1.5 Structure of the Document
The manuscript is organised as follows. This introduction is the first chapterof the document. Then, the document is divided into two main parts: the firstpart presents the theoretical foundations andunifying perspectives in Learning-Based Control. The second part presents the research projects conducted dur-ing the PhD. The content of each chapter is now briefly presented.
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1.5.1 Theoretical Foundations and Unifying Perspectives
From Stochastic Control to Markov Decision Processes

The second chapter introduces the continuous time stochastic control conceptsfrom which all the other notions discussed in the document (e.g. Markov De-cision Processes (MDP), Bellman equation) can be inherited. It connects thecontinuous time control point of view to the discrete time framework, whichis more common in the Learning-based control literature. In particular, thechapter introduces the notion of system sampling that allows for linking bothcontinuous and discrete time worlds. The existence of this connection is use-ful in various applications and is a core tool used in Chapter 5. The end of thischapter deals with the numerical approximation of the continuous time controlproblem. The reading of this chapter is recommended before going throughthe part devoted to continuous time control (Chapter 7).
Learning-based Control with Discrete Decision
Processes

The third chapter of this document presents the discrete time decision frame-work that is widespread in Learning-based control literature. Elements of learn-ing theory are then presented in which key concepts such as learning task (loss)or generalisation error are introduced. The chapter ends with a description ofLearning-based control and a presentation of the concrete dynamical systemsused in the numerical experiments performed in this document. The readeronly interested in the discrete time approach may solely start reading this doc-ument from Chapter 3 and ignore Chapter 7.
1.5.2 Methodological Advances in Learning Based Control
Evidenceon theRegularisationProperties ofMaximumEntropyReinforce-
ment Learning

This fourth chapter is the first of the second part. It deals with the robustnesschallenge of RL presenting empirical evidence on the robustness of MaximumEntropy Reinforcement Learning. It introduces the notion of complexity mea-sure which is borrowed from statistical learning theory. Then, measures ofrobustness are introduced and the chapter ends with a presentation of theempirical results obtained. This work led to the publication of a paper on theproceedings of the 7th International Conference in Optimization and Learning(OLA24) in Dubrovnik (Hosseinkhan Boucher, Semeraro, and Mathelin 2025).
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Increasing Information for Model Predictive Control
with Semi-Markov Decision Processes

Chapter 5 discusses the sample complexity approach in LB-MPC with the in-troduction of semi-Markov decision processes to extend a sample acquisitionstrategy that acceleratesmodel learning. The chapter presents the informationtheoretic notion of expected information gain in the context of Gaussian pro-cess based model predictive control. Then, an extension of the approach tothe semi-Markov decision process framework is presented to increase the in-formation acquisition speed. Results on the sample efficiency of the approachare presented. This work led to a conference paper published in the proceed-ings of the 6th Annual Learning for Dynamics & Control Conference (L4DC24)(Hosseinkhan Boucher, Douka, et al. 2024).
Distributional Reinforcement Learning is Sample Efficient

Chapter 6 presents empirical evidence on the sample efficiency of Distribu-tional RL. The chapter discusses the statistical approach to learn (estimate) dis-tributions by introducing basic concepts of optimal transport theory and quan-tile regression. Next, the distributional perspective in RL is introduced and astate-of-the-art algorithm available in the literature is presented. The chapterends with empirical results on the sample efficiency of the approach.
Neural Controlled Delay Differential Equations for
Model Based Control

Chapter 7 presents a recent approach to model delayed dynamical systemswith continuous-time neural delayed differential models. Continuous-time Re-inforcement Learning is first presented, then two use cases of using delayedneural models for control are presented: delayed dynamical systems identifi-cation and partial observability handling. Finally, the neural model is presentedand the chapter ends with empirical results on learning delayed or partially ob-servable dynamical systems.The last chapter concludes the document by summarising the contributionsof the work presented and discusses future research directions.
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I Theoretical Foundations andUni-
fying Perspectives
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2 From Stochastic Control to Mar-
kov Decision Processes

The first part of this thesis begins with the present chapter, which introducesthe theoretical foundations and a unifying perspective on control.

2.1 Introduction
This chapter introduces the field of stochastic control with the aim of outlin-ing its connection with the learning-based control standard formalism. Mod-ern frameworks for learning methods in control, such as Markov Decision Pro-cesses (MDP), have roots in the mathematical field of Control Theory. As it willbe discussed in the next section, this relationship does not seem to be well-known in the Machine Learning (ML) community but tends to be increasinglyconsidered in the literature.
2.1.1 Connecting Stochastic Control and Reinforcement

Learning
Recently, the paper “A Tour of Reinforcement Learning: The View from Con-tinuous Control” (Recht 2018) discussed the proximity between deterministiccontrol theory and Reinforcement Learning, an interdisciplinary area of ma-chine learning and optimal control. Two years later, a paper published in theJournal of Machine Learning Research (H. Wang, Zariphopoulou, and X. Y. Zhou2020), entitled “Continuous Stochastic Control with Deep Reinforcement Learn-ing”, uses the connection between the Stochastic Control theory and MDP topropose an analysis of the maximum entropy principle in the context of Rein-forcement Learning. Indeed, the central concept of exploration (closely tied tothe policy entropy) is much more natural in a stochastic setting.This chapter elaborates and extends the presentation given by H. Wang, Za-riphopoulou, and X. Y. Zhou 2020 by showing how the standard Partially Observ-able Markov Decision Process (PO-MDP) formulation is obtained from PartiallyObservable Stochastic Differential Equations. This contribution could softenthe gap between the two fields and provide amore solid theoretical foundation
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for the learning-based control literature. Notably, carefully chosen referencesare provided to the reader for each step of the development. It is likely that thefrontier between continuous and discrete time learning-basedmethods will be-come less marked in the future (see Croissant 2023 for a recent thesis at theintersection of the two fields and Leahy et al. 2022 for a recent work in thisframework).
2.1.2 A General Framework for Diverse Applications
The choice of starting the presentation from a general, continuous-time pointof view (Section 2.2) allows encompassing all the different concepts treated inthis thesis. Hence, all cases presented in the subsequent chapters are particu-lar cases of the framework introduced here.Moreover, the generality of the presentation is broadened by the presenceof a lag or delay affecting the system evolution. This is also motivated by thedesire to unify the framework for the whole document. The question of delaywill be addressed particularly in Chapter 7.In addition, the question of sampling analogous (continuous-time) signals isalso discussed at the end of the chapter (Section 2.3) since it can be related tothe notion of Semi-Markov Decision Process (Sutton, Precup, and Singh 1999)that is treated in the work presented in Chapter 5.The end of the chapter (Section 2.4) deals with the question of simulationand numerical approximation. The classical approximation scheme presentedthere bridges the gap between the continuous-time and discrete-time decisionprocesses.
2.1.3 A Note on the Mathematical Development
It is important for the reader to be aware that this chapter does not attempt toprovide a mathematically rigorous treatment of the highly abstract problem ofPartially Observable Stochastic Control. An important list of heavy mathemat-ical concepts proper to stochastic differentiability and infinite dimensionalityare hidden from the reader but present in the mathematical references. Oth-erwise, the development would be very heavy and substantial work would berequired tomergemultiple concepts (e.g. the partial observability and the pres-ence of delays). The reader is referred to W. Fleming and Rishel 1975; Øksendal2010 for an introduction to the field of stochastic control.The next section introduces the main concepts of stochastic control, in ageneral manner, before focusing on the specific cases.

2.2 Concepts of Stochastic Control
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2.2.1 The notion of control
Many dynamical systems that can be observed or measured are subject to im-perfectly known disturbances, possibly random. This randomness can be dueto the environment, the system itself, or the measurement process. The termnature is often used to qualify the origin of the exogenous perturbations that af-fect the system. Alternatively, the system can be controlled by an endogenous9input called control.
Controlling a Dynamical System

Generally, the control U applied to the dynamics is carried out by some agentor controller. An important question concerning the design of control systemsis the information available to the controller at each unit of time.W. Fleming and Rishel 1975 mentions three main situations:
• The information available to the agent is determined a priori, before thebeginning of the control procedure. Then, the control only depends ontime, while the amount of available information is constant over time andequals the initial information. It is called “open loop” control.
• The system state Xt or history Ht is available to the controller at time
t. Thus, the amount of available information then depends on time. Forinstance, when the history is available to the decision maker, the infor-mation increases10. This setting is termed as “closed-loop” or feedbackcontrol in the case of complete observability.

• Only a partial representation Yt of the state is available. The quantity Ytis often a set of system measurements that are called observables. Math-ematically, the observables are a function of the state11. In this case, the
9The terms “exogenous” and “endogenous” are borrowed from economics (Blanchard andJohnson 1991; Acemoglu 2008).10In probability theory, this idea is formalised with the concept of filtration (Jean-Francois LeGall 2013) which is an increasing sequence of σ-algebras. A σ-algebra is a collection of events(subsets of the outcome space Ω). The richer the σ-algebra, the more information is available(there are more events). A σ-algebra can be generated by a random variable, in which caseit represents all the possible events that can be discerned from the values described by thisrandom variable. Notably, the σ-algebra generated by a constant random variable (poorly in-formative) is the certain event Ω and the impossible event ∅ (almost no information on therandom experiment is conveyed by the constant random variable in the resulting σ-algebra).11In practice, the function is injective since they often represent lower dimensional measure-ments which can have the same exact value, given two different underlying states.Theσ-algebra generated by a function of a randomvariable is always contained in theσ-algebraof this random variable. Consequently, the information is whether kept or lost but never cre-ated from transforming or extracting data. The two σ-algebras are the same if the function isbijective.
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available information is always lower than when the full state is observ-able. This setting is termed as “closed-loop” or feedback control in thesetting of partial observability.
In the next section, the problem of control in infinite dimension is describedand how it can be framed as a Partially Observable Markov Decision Process.

Preliminary References on Stochastic Control

The reader is referred to Trélat 2023 for amore rigorous treatment of control ofdifferential equations, El Karoui, Du Huu, and Jeanblanc-Picqué 1987; H. Wang,Zariphopoulou, and X. Y. Zhou 2020 to find details on continuous stochasticcontrol and to Pan et al. 2018; Bucci et al. 2019 for recent applications with Re-inforcement Learning. Note the very challenging notions of existence, unique-ness, controllability and observability of the solutions are omitted here.The development of this chapter is inspired by multiple references in thefield of Stochastic Differential Equations and Stochastic Control. In particular,this tutorial borrows concepts from Relaxed Stochastic Control for fully observ-able systems (W. H. Fleming and Nisio 1984; El Karoui, Du Huu, and Jeanblanc-Picqué 1987; Redjil and Choutri 2017) and Partially Observable Stochastic Con-trol (N. Ahmed 2007; N. U. Ahmed and Xiang 1992). SDE in infinite dimension istreated in Gatarek and Goldys 1994; Gawarecki and Mandrekar 2015. An articleon control of infinite-dimensional SDE is Bensoussan and Viot 1975. The topic ofdelayed SDE is treated in Küchler andMensch 1992; S. Mohammed 1984; S.-E. A.Mohammed 1998; Buckwar 2000 and the control of delayed SDE in Elsanosi,Øksendal, and Sulem 2000. Other references for the notions introduced beloware directly introduced in the text.
2.2.2 General Continuous-time Formulation
A general formulation of the state and observation dynamics covering most ofthe recent challenges in learning-based dynamical systems modelling is intro-duced now.
General Continuous-time Stochastic Dynamics

Let X = (Xt)t∈I denote the state process, subject to the control process U =

(Ut)t∈I and Y = (Yt)t∈I the observation process defined on I ⊂ R+ = R+ ∪
{+∞}. Thus, I = [t0, T ] for some initial time t0 ∈ R+ and final time T ∈ R+ ∪
{+∞}.Those objects are stochastic processes that are defined on a probabilityspace (Ω,F ,P). The state and control processes evolve in someBanach spaces
X andU while the observation process evolves in a finite dimensional Euclideanspace Y ⊂ RdY with dY ∈ N+.
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Now, a central object of this presentation is presented that encompassesa very broad class of dynamical systems from physics to finance. The generaldynamics studied here are continuous-time stochastic process.
Definition 2.2.1 (General Dynamics - Differential). The state process X is thesolution of the stochastic differential equation (SDE){

dXt = f (Xt, Xt−τX , Ut) dt+ ϵX(Xt, Ut) dW
1
t

X[t0−τX ,t0] ∼ PX[t0−τX,t0]

(2.1)
where f : X ×X ×U → X is the dynamics operator, ϵX : X ×U → X is the statenoise operator,W 1 is a standard Brownian motion and τX ∈ R+ is the state delaysuch that t− τX ∈ I for all t ∈ I .The initial condition is given by the distributionPX[t0−τX,t0]

. The dynamics defined
by (2.1) being a delay-differential equation, the initial valueX[t0−τX ,t0] is not a pointin a vector space but a history process over the interval [t0 − τX , t0]. The dynamicsoperator f acts between Banach spaces.The state noise operator, also known as diffusion coefficient, ϵX is a function ofthe state and the control process which scales the Brownian motionW 1.The observation process Y is driven by the SDE12{

dYt = g (Xt, Xt−τY , Ut) dt+ ϵY (Xt, Ut) dW
2
t

Yt0 ∼ δg0(Xt0)
(2.2)

where the observation operator g : X ×X ×U → Y is a function acting from thestate, delayed-state and control spaces to the observation space, the observationnoise operator ϵY : X × U → Y is a function of the state and control processeswhich scales the Brownian motionW 2. The observation delay τY ∈ R+ is such that
t − τY ∈ I for all t ∈ I . The initial observation is obtained from the state throughthe mapping g0 : X → Y . The distributions ofX[t0−τX ,t0],W 1 andW 2 are supposedto be independent.The set of all control processes such that (2.1) and (2.2) are well-posed is denoted
AU (admissible control space).

The dynamics (2.1) and (2.2) are presented in differential form but can alsobe written in integral form.
Definition 2.2.2 (General Dynamics - Integral). Definition 2.2.1 can be rewrittenin integral form as

Xt = Xt0 +

∫ t

t0

f (Xs, Xs−τX , Us) ds+

∫ t

t0

ϵX(Xs, Us) dW
1
s (2.3)

12The dynamics of the observation process is inspired by W. H. Fleming and Nisio 1984. Thedelayed formulation is treated, for instance, in Buckwar 2000.
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for the state process and
Yt = g0 (Xt0) +

∫ t

t0

g (Xs, Xs−τY , Us) ds+

∫ t

t0

ϵY (Xs, Us) dW
2
s (2.4)

for the observation dynamics.The right-most integrals involving Brownianmotions are stochastic integrals. It canbe interpreted as time-correlation between the diffusion coefficients ϵX or ϵY andthe Brownian motion variations dW 1
t or dW 2

t , respectively. Remark 2.2.2 gives moredetails about the interpretation of the stochastic integral.
A series of remarks are necessary to disentangle the framework presentedhere.

Remark 2.2.1 (Motivation). The possibility to consider the system state Xt as a(possibly random) function (e.g. Xt(z), z ∈ R3) which may be a solution of a par-tial differential equation (PDE), is the reason for using general infinite-dimensionalspaces in this presentation. This choice is not common in the learning-based controlliterature, see Pan et al. 2018; Bucci et al. 2019; Peitz, Stenner, et al. 2024 for a workon this topic in Reinforcement Learning.
Now, the meaning of the stochastic integral terms in the dynamics is ex-plained.

Remark 2.2.2 (Interpretation of the stochastic integral). For simplicity, it is sup-posed that X = R such that the Brownian motionW : I × Ω → R takes values inthe real line.For every sequence t0 = tnk0 < tnk1 < . . . < tnkn = t of partitions of the interval
[t0, t] ⊂ I such that maxni=1 δ

n
tki

→ 0 as n → ∞, where δntki = |tnki − tnki−1
|,

lim
n→∞

kn−1∑
i=0

ϵX(Xtnki
, Utnki

)(Wtnki+1
−Wtnki

) =

∫ t

t0

ϵX(Xs, Us) dWs (2.5)
in probability13.Let the discrete-time increments of the Brownian motion be δWtnki

= Wtnki+1
−

Wtnki
. By definition of the Brownian motion,

δWtnki
= Wtnki+1

−Wtnki
∼ N (0, δntki

) (2.6)
and informally, δWtnki

→ dWt when n → ∞. Consequently, the stochastic integra-
tion can be seen as standard integration with randomly distributed infinitesimal

13See for instance, Jean-François Le Gall 2006 for a definition of convergence in probability. Incommon terms, it means that for any treshold, the probability that the absolute error, betweenthe sequence and its limit, is above the treshold goes to zero.
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time increments. Moreover, since the partial sum of Eq. (2.5) approximates thestochastic integral, if the scaling parameter is constant e.g. ϵX = 1

kn−1∑
i=0

δWtnki
≃
∫ t

t0

dWs = Wt (2.7)
where the last equality can be obtained by noting that the partial sum is telescopic.The above approximation gathers some key properties.First, the integral approximates the sum of Gaussian random variables whose scale(variance) is the time increment. Second, at time t, the Brownian motionWt is equalto the sum of those random increments. Third, by definition of the Brownian mo-tion, the increments are independent and normally distributed: this motion can beinterpreted as the limit of a discrete random walk with normally distributed incre-ments.More information about this approximation can be found in Jean-Francois LeGall 2013, Proposition 5.9 for a multidimensional Brownian motion.The stochastic integral can be defined with respect to other stochastic processesthan the Brownian motion, see Remark 2.2.6. The careful reader may notice thesimilitude between the stochastic integral and the Riemann-Stieltjes integral.

The following case is enlightening despite being not considered in the appli-cations in the work presented here.
Remark 2.2.3 (Functional Brownian motion). Consider the case where X is aninfinite-dimensional function space. Then a Brownian motion onX defines a trajec-tory in a functional space. It can be thought as a continuous sequence of randomspatial functions.For some outcome ω ∈ Ω of the random experiment, the value of the BrownianmotionWt(ω) at time t, is a function of the space (i.e.Wt(ω)(z)where z is the spatialcoordinate).In this general case (Guiseppe Da Prato and Zabczyk 1992), the increments of theBrownian motion define a Gaussian process.

δWtnki
= Wtnki+1

−Wtnki
∼ GP(0, δntki

1z=z′) (2.8)
where the covariance operator (z, z′) 7→ δntki

1z=z′ generalises the finite dimensionalscaled identity matrix δntkiIdX . Hence, when the stateXt is a function, the dynamicsare perturbed by a strong (spatial) Gaussian white noise14.
Some important cases that are commonly encountered in the literature arenow presented.

14Here, a strong Gaussian white noise is a stochastic process such that all coordinates areindependant gaussian.
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Particular Cases

A very standard setting is when the dynamics are Markovian.
Remark 2.2.4 (Markovian Dynamics). The state and the observation, dynamics(2.1)-(2.2) are said to be Markovian if their respective operators f and g, only de-pend on the current stateXt, and the control process Ut where the control processdepends only on the instantaneous state Xt. In this case, the state process Xt , re-spectively the observation process Yt , is a Markov process.If the dynamics are deterministic, to be Markovian means that time-derivativeof the state process is a function of the instantaneous state and control only.A Markov process that is a solution of a stochastic differential equation is calleda diffusion process.

The initial condition can be fixed to a deterministic value.
Remark 2.2.5 (Fixed Initial Condition). Let (xt)t∈[t0−τX ,t0] ∈ X [t0−τX ,t0] be an ar-bitrary initial history function. It is possible to fix the initial condition X[t0−τX ,t0] =
x[t0−τX ,t0] by setting PX[t0−τX,t0]

= δ{x[t0−τX,t0]
} where δ{x[t0−τX,t0]

} is the Dirac mea-sure at {x[t0−τX ,t0]}. This way, the initial condition is deterministic (degenerated)andX[t0−τX ,t0] = x[t0−τX ,t0] with probability one.15 In the Markovian case, for x ∈ X ,
PXt0

= δ{x}.
A Gaussian noise is a common choice for the state noise, but other distur-bance distributions can be considered.

Remark 2.2.6 (General Noise). The brownian motion is analogous to Gaussiannoise in the discrete-time setting. A larger class of continuous-time noise processescan be considered, e.g. see S.-E. A. Mohammed 1998 considers a particular typeof process called semi-martingale noise (Jean-Francois Le Gall 2013; Revuz and Yor1999), but this notion is way beyond the scope of this work.
Remark 2.2.7. The challenges in Learning-based Control introduced in Section 1.4.1are addressed by the general framework presented here.

• The robustness aspect will be covered by the stochastic nature of the dynamicscharacterised by the Brownian motionsW 1 andW 2 in Eq. (2.1) and (2.2).
• The partial observability is addressed by the observation process Y (Eq. (2.2)).
• The delayed state Xt−τX and observation dynamics Xt−τY should provide awide panel of interesting configurations that feature the challenges of control-ling systems with lagged information.

15In probability theory, an event that occurs with probability one is said to happen almostsurely (a.s.)
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Observability

Observability is now regardedmore rigorously. Throughout the document, thenotion of observability will refer to the following definition
Definition 2.2.3 (Terminology on Observability). If Y = X and g0 = Id, then thesystem is said to be fully observable. Otherwise, the system is partially observable.
Examples of Dynamics

A few examples are now given to illustrate the general framework presentedabove.
Example 2.2.1 (Deterministic Dynamics and PDE). Consider the subclass of de-terministic stochastic processes (xt)t∈I , i.e. (Xt(ω))t∈I = (xt)t∈I for any ω ∈ Ω.Suppose that X = L2(Rdz) with dz ∈ N∗, ϵX = 0 and ϵY = 0. Then, the statedynamics given by (2.1) becomes{

∂txt (z) = f (xt (z) , xt−τX (z) , ut (z))

x[t0−τX ,t0] (z) = ξ (z)
(2.9)

and {
∂tyt (z) = g (xt (z) , xt−τY (z) , ut (z))

yt0 (z) = g0 (xt0 (z))
(2.10)

where ξ : [t0 − τX , t0] → L2(Rdz) is an initial history function. In particular, any de-layed and controlled partially observable PDE can be represented when f is chosenas a partial derivative operator.The well-posedness and existence of the solution of (2.9)-(2.10) is a challengingproblem in the theory of PDEs, but it will not be addressed here. To go further, thereader may be interested in the books of Cartan 1971; Evans 1998; Zuily 2002 aboutPDEs and Lions 1971; Bensoussan 1993; Bardi and Capuzzo-Dolcetta 2008; Trélat2023 for controlled PDEs.
Example 2.2.2 (Delayed Differential Equation). Consider the subclass of deter-ministic stochastic processes (xt)t∈I , i.e. (Xt(ω))t∈I = (xt)t∈I for any ω ∈ Ω.Suppose that X = RdX with dX ∈ N∗, ϵX = 0 and ϵY = 0. Then, the state dynamicsgiven by (2.1) becomes {

∂txt = f (xt, xt−τX , ut)

x[t0−τX ,t0] = ξ
(2.11)

and {
∂tyt = g (xt, xt−τY , ut)

yt0 = g0 (xt0)
(2.12)
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where ξ : [t0 − τX , t0] → RdX is the initial condition.In particular, any controlled partially observable Delayed Differential Equation(DDE) can be represented. An ordinary differential equation (ODE) is a particularcase of DDE when the delay term is ignored.In the control-free setting, the existence and uniqueness of the solution of (2.11)-(2.12) is guaranteed when the dynamics operator f is continuous and Lipschitz. Theinterested reader can find an important development of the DDE theory in the ref-erence manuscripts of Kuang 1993, Smith 2010 and Hale 1971.
Example 2.2.3 (Stochastic Navier-Stokes). Some fundamental dynamics in fluiddynamics are given by the Navier-Stokes equation. Let X = L2(I × R2;R2). In thestochastic setting, it reads
dXt(z1, z2) = νNS(∆Xt(z1, z2)− ⟨Xt(z1, z2),∇⟩Xt(z1, z2)−∇pt(z1, z2)) dt+dWt(z1, z2)(2.13)where∇ is the gradient operator (∂z1 , ∂z2),∆ is the Laplace operator ∂2

z1
+∂2

z2
, and

⟨Xt,∇⟩ stands for the differential operator ∂z1X1
t + ∂z2X

2
t , with Xt = (X1

t , X
2
t )the velocity field and pt the pressure field at time t. The term νNS ∈ R∗

+ is thekinematic velocity.16 Boundary or limit conditions can be added to Eq. 2.13, but theyare omitted here for simplicity.For a rigorous treatment of this example, the reader may check Bensoussan andTemam 1973; E 2000; Giuseppe Da Prato and Debussche 2000; Kuksin and Shirikyan2012; Fabbri, Gozzi, and Swiech 2017.
The question of control is now addressed by defining the associated prob-lems the decision-maker is confronted with.

2.2.3 Control Objective
The definitions in this part extend the classical control theory presented byTrélat 2005; Trélat 2023 to the stochastic setting.
Control Problem

Suppose that I = [t0, T ]. Given a region of the state space EX ⊂ X , the controlor controllability problem is to find a control process U such that the controlledprocess (2.1) satisfies
X[t0−τX ,t0] = ξ and XT ∈ EX (2.14)

almost surely (i.e. with probability one) where ξ ∼ PX[t0−τX,t0]
is the initial ran-

dom condition on the history (a stochastic process on [t0 − τX , t0]).
16The superscript NS stands for Navier-Stokes.
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Optimal Control Problem

The optimal control problem is a control problem as defined above, but withthe constraint that the control process U minimises a cost function.Let define the random total cost as the accumulated cost over the time in-terval [t, T ]
Z
(
t,PX[t−τX,t]

, U
)
=

∫ T

t

e−γ(s−t0)c (Xs, Us) ds (2.15)
for any t ∈ I with γ ∈ [0,+∞[ a discount factor and c : X × U → R an instanta-neous cost function. This quantity is a random variable. Its value depends onthe random initial condition, noise, and random control process. The randominitial cost from initial time t0 is denoted Z(PX[t−τX,t]

, U) := Z(t0,PX[t0−τX,t0]
, U)

The typical scalar-valued objective functional of the following form is con-sidered
J
(
t,PX[t−τX,t]

, U
)
= E

[∫ T

t

e−γ(s−t0)c (Xs, Us) ds

]
= E

[
Z
(
t,PX[t−τX,t]

, U
)]
(2.16)This quantity is a real number which averages the random total cost. If t = t0,the objective functional J(t0,PX[t0−τX,t0]

, U) is denoted J(PX[t0−τX,t0]
, U).

The optimal objective functional is then defined as
J∗
(
t,PX[t−τX,t]

)
= inf

U∈AU
J
(
t,PX[t−τX,t]

, U
) (2.17)

for any t ∈ I . The control process that minimises the cost is denoted U∗ ∈ AU .Hence, the optimal control problem solves
J∗
(
PX[t0−τX,t0]

)
= J∗

(
t0,PX[t0−τX,t0]

)
= inf

U∈AU
E
[∫ T

t0

e−γ(s−t0)c (Xs, Us) ds

]
(2.18)In the case the initial condition is fixed (see Remark 2.2.5), the optimal objectivefunctional is given by

J∗ (x[t0−τX ,t0]

)
= inf

U∈AU
E
[∫ T

t0

e−γ(s−t0)c (Xs, Us) ds | X[t0−τX ,t0] = x[t0−τX ,t0]

]
(2.19)Similarly, for the Markovian case, the optimal objective functional is given by

J∗ (xt0) = inf
U∈AU

E
[∫ T

t0

e−γ(s−t0)c (Xs, Us) ds | Xt0 = xt0

]
(2.20)

Note that the problem of the existence of an optimal partially observable con-trol has no solution in a general way. The following remarks are intended toprovide further insight into the optimal control problem.
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Remark 2.2.8. The control problem (stricto-sensu) can also be defined when T =
+∞. In this case, the terminal condition at time T is replaced by the condition thatthe state remains in EX forever when t is sufficiently large. Moreover, the condition
γ < 0 is necessary to ensure the convergence of the integral.
Remark 2.2.9. Note that if EX = X , then the control problem is trivial, i.e. for anycontrol process U , XT ∈ X .In that specific case, the optimal control problem reduces to the minimisationof the cost function (2.18).
Remark 2.2.10. Traditionally, the objective functional in finite time adds a “termi-nal cost” (Trélat 2023) term which is omitted here for simplicity. The terminal costis a function of the final state XT . This kind of cost is well-suited for task or goal-oriented problems.
Remark 2.2.11. If γ = log(γ) with γ ∈ ]0, 1], then

J∗ (t, U) = inf
U∈AU

E
[∫ T

t

γsc (Xs, Us) ds

]
(2.21)

which is a formulation that is often employed in the discrete case.
Remark 2.2.12 (Constrained minimisation). The optimal control problem can beseen as a constrained minimisation problem where the quantity to optimise is theobjective functional (2.18) and the constraints are the dynamics (2.1)-(2.2)with initialand terminal conditions specified by (2.14).Thus, it makes sense to consider calculus of variations (Bourguignon 2007) andconstrained optimisation theory in infinite-dimensional spaces (since the controlspace is infinite-dimensional (Peypouquet 2015)) to solve the optimal control prob-lem in specific cases.

An important type of cost function that is used in all the work in this thesisis now presented.
Example 2.2.4 (Quadratic Cost). The quadratic cost function is a common choicein control theory. Given two definite positive operators AX and AU , it is defined as

c (x, u) = ∥x∥2L2,AX
+ ∥u∥2L2,AU

(2.22)
where ∥x∥L2,A := ⟨x,Ax⟩L2 for any positive definite operator A and any vector x
in the corresponding L2 space. The quadratic cost is used in the Linear QuadraticRegulator (LQR) problem Trélat 2005.
Closed-Loop Control

Now the feedback control is formally defined.
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Definition 2.2.4 (History-dependent control). The process (Ut)t∈I is said to bea history-dependent control if for any t ∈ I , it is a function of the past trajec-tory17((Ys)t0≤s≤t, (Us)t0≤s<t) of the observation-control process.Formally18, for any t ∈ I , there exists a function ut : Y [t0,t] × U [t0,t[ → U such that
Ut = ut

(
(Ys)t0≤s≤t , (Us)t0≤s<t

) (2.23)
Definition 2.2.5 (Feedback control). A feedback control process (Ut)t∈I is a historydependent control process where the feedback loop function u is solely a functionof the instantaneous observation Yt.Formally, for any t ∈ I , there exists a function ut : Y → U such that

Ut = ut (Yt) (2.24)
This kind of control is sometimes called Markovian control.
Remark 2.2.13. In the field of automation, a history-dependent control is oftenlabelled closed-loop control while a control that is independent of the past ob-servations and decisions is called open-loop control (W. Fleming and Rishel 1975;Åström and Murray 2021).
2.2.4 Policy
So far, a stochastic process U = (Ut)t∈I has been considered to control the sys-tem. Consider an outcome ω ∈ Ω of a control experiment where, for instance,the random system evolution is observed or simulated.The resulting controlled trajectoryX(ω) = (Xt(ω))t∈I depends on the fixed con-trol trajectory U(ω) = (Ut(ω))t∈I . This means that once a control process U ischosen, if a controlled trajectory (Xt(ω))t∈I is observed as the outcome of a ran-dom experiment, then its associated control trajectory (Ut(ω))t∈I is fixed andalways the same.

An example may help to grasp this concept of stochasticity19. Suppose theoutcome space Ω = {10◦, 30◦} gives the initial temperature in a room and
U(ω) = turn on the air conditioning at 20°C for ω = 30◦ and turn on the heat-ing at 20°C for ω = 10◦.Let Xt(ω) be the temperature in the room at time t. Then, for each scenario

17In probabilistic terms, this is equivalent to say the control ismeasurable w.r.t. the σ-algebragenerated by the past observation-control process (the measurability condition is equivalentto the existence of u). Thus, the information available at time t to the controller is governed bythe past trajectory.18Mathematically, the question of the existence of such control is not trivial at all, especiallyin the stochastic setting where the history dependence, and by extension the concept of infor-mation availability, is defined in terms of measurability with respect to filtration generated bythe process (El Karoui, Nguyen, and Jeanblanc-Picqué 1988).19This example can be written much more formally without too much difficulty.
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(initial room temperature) ω = 10◦ and ω = 30◦, the action performed is alwaysthe same (turning up or down at a prescribed level of temperature)20.This way, the impact of any other decision variant would be unknown. Forinstance, what would happen to the temperature Xt(ω) if the air conditioningwas turned at 40°C instead of 20°C?Thus, the resulting information about the environment is rather limited. Choos-ing a U that covers a larger, possibly randomised spectrum of decisions wouldhelp to extract more knowledge on the experiment and the system dynamics
X . Ideally, for a given scenario (fixed by the outcome ω), a range of controlprocesses is considered.This basic example leads to the broader concept of exploration.

Indeed, given this fixed state trajectory X(ω), one can be interested in thebehaviour of the systemunder different control trajectories thanU(ω). This no-
tion is of extreme importance in the modern learning-based control fieldand is called exploration (Ladosz et al. 2022). The exploration is a vast topic inlearning-based control and notably in Reinforcement Learning. Chapter 5 willaddress this topic using a tool from Information Theory to increase the infor-mation extracted from the system.

From this perspective, the idea is to enlarge the control space U and con-sider that the control process U takes values in a space Π of probability mea-sures on U also known as generalised control space. This leads to the conceptof policy.
Definition 2.2.6 (Policy). LetΠ be the space of probability measures onU . A policy
π, or policy process is a Π-valued stochastic process, i.e. a process π = (πt)t∈I suchthat for any t ∈ I , πt ∈ Π.
Definition 2.2.7 (Stationary Policy). A policy is said to be stationary if there existsa probability measure π̃ ∈ Π such that for any t ∈ I , πt = π̃ ∈ Π.In this case, the policy is a fixed probability measure on U (by identification) and isdenoted π by abuse of notation.
Remark 2.2.14 (Degenerated Policy). Let U = (Ut)t∈I be a control process. Sup-pose that π =

(
δ{Ut}

)
t∈I where δ{Ut} is the Dirac measure at {Ut}. Then, the policy

π is termed degenerated and is analogous to the control process U .Indeed, sampling from π deterministically returns U .
Once the policy concept is introduced, the control problem can be reformu-lated to incorporate the uncertainty in the control process. Originally, this hasbeen coined as Relaxed Stochastic Control (El Karoui, Du Huu, and Jeanblanc-Picqué 1987).

20The degenerate case, where Ω contains only one outcome (scenario) implies that the dy-namics are deterministic and the control is a function of the time.
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2.2.5 Relaxed control
The relaxed or exploratory version of the dynamics (H. Wang, Zariphopoulou,and X. Y. Zhou 2020) is given by the following equation.
Definition 2.2.8 (Relaxed Dynamics - Differential). Considering the context ofDefinition 2.2.1, and some arbitrary policy π = (πt)t∈I , the relaxed dynamics aregiven for the state process by

dXt = f (Xt, Xt−τX , πt) dt+ ϵX(Xt, πt) dW
1
t (2.25)

and for the observation process by
dYt = g (Xt, Xt−τY , πt) dt+ ϵY (Xt, πt) dW

2
t (2.26)

where
f (Xt, Xt−τX , πt) :=

∫
U
f (Xt, Xt−τX , u) πt(du) (2.27)

while the observation operator g, the noise terms ϵX and ϵY are defined similarly.The set of all policies such that the relaxed dynamics (2.25)-(2.26) is well-defined isdenoted AΠ.
The notion of policy generalises the stochastic optimal control problem pre-sented before. The next remark highlights this point.

Remark 2.2.15. The remark 2.2.14 shows that the control process is a particularcase of policy. In other words, the set of control processes is a subset of the set ofpolicies.
AU ⊂ AΠ (2.28)

This is a standard observation in the stochastic control literature. It allows math-ematicians to obtain optimality results more easily by reformulating (relaxing) theoptimisation problem.21
A corresponding relaxed optimal control problem can be defined exactly asthe classical optimal control problem.

Relaxed Optimal Control Problem

The relaxed optimal control problem is the relaxed dynamics counterpart of theoptimal control problem where the policy plays the role of the control process.Let the random total cost as the accumulated cost over the time interval
[t, I] be defined as

Z
(
t,PX[t−τX,t]

, π
)
=

∫ T

t

e−γ(s−t0)c (Xs, πs) ds (2.29)
21In mathematics, especially in topology, this procedure is called compactification (El Karoui,Du Huu, and Jeanblanc-Picqué 1987; Shalizi 2007). Compact sets are extremely useful to findoptima.
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At time t = t0, the random initial cost will be denoted by Z(PX[t−τX,t]
, π) :=

Z(t0,PX[t0−τX,t0]
, π).

The object is to find a policy π such that the following objective is minimised
J
(
t,PX[t−τX,t]

, π
)
= E

[∫ T

t

e−γ(s−t0)c (Xs, πs) ds

]
= E

[
Z
(
t,PX[t−τX,t]

, π
)]
(2.30)where

c (x, πs) :=

∫
U
c (x, u) πs(du) (2.31)

for any x ∈ X and πs a probability measure on U .Similarly, the relaxed optimal objective functional is defined as
J∗
(
t,PX[t−τX,t]

)
= inf

π∈AΠ

J
(
t,PX[t−τX,t]

, π
) (2.32)

The optimal policy that minimises the cost is denoted π∗ ∈ AΠ. The relaxedoptimal control problem is then to solve
J∗
(
PX[t0−τX,t0]

)
= J∗

(
t0,PX[t0−τX,t0]

)
= inf

π∈AΠ

E
[∫ T

t0

e−γ(s−t0)c (Xs, πs) ds

]
(2.33)As for the control problem, when the initial distribution is degenerated, theoptimal objective functional is given by

J∗ (x[t0−τX ,t0]

)
= inf

π∈AΠ

E
[∫ T

t0

e−γ(s−t0)c (Xs, πs) ds | X[t0−τX ,t0] = x[t0−τX ,t0]

]
(2.34)Similarly, for the Markovian case, the optimal objective functional is given by

J∗ (xt0) = inf
π∈AΠ

E
[∫ T

t0

e−γ(s−t0)c (Xs, πs) ds | Xt0 = xt0

]
(2.35)

A particular case of the relaxed optimal control problem that is at the coreof Chapter 4 is now presented.
Maximum Entropy Control Problem

An important typical case is the maximum-entropy control problem. This ap-proach intends to find the optimal policy that maximises the entropy of thecontrol process. The entropy is a measure of disorder (or uncertainty) of a ran-dom variable (or its distribution). Thus, the cost function is given by
JH

(
t,PX[t−τX,t]

, π
)
= E

[∫ T

t

e−γ(s−t0)c (Xs, πs)− αHH [πs] ds

]
(2.36)

36



whereH denotes the entropy (Cover and Thomas 2006).The regularisation introduced by the entropy term is a way to promote ex-ploration. Chapter 4 discusses how this regularisation also impacts the robust-ness of the final solutions.The following section introduces the concept of a feedback policy, also re-ferred to as a closed-loop policy. These policies are widely regarded as thestandard within the field of learning-based control.
Closed-Loop Policy

Definition 2.2.9 (History-dependent Policy). Let t ∈ I . The measure-valued pro-cess π = (πt)t∈I is said to be a history-dependent policy if for any t ∈ I , it is afunction of the past trajectory of the observation-control process ((Ys)s≤t , (Us)s<t

).
Formally, for any t ∈ I , there exists a mapping (probability kernel) π̃ : Y [t0,t] ×

U [t0,t[ → Π such that
πt = π̃t

(
du | (Ys)s≤t , (Us)s<t

) (2.37)
The set of all admissible history-dependent policies is denoted A H

Π .
Definition 2.2.10 (Markovian Policy). A feedback policy π = (πt)t∈I is a history-dependent policy where the associated mapping π̃t is solely a function of the instan-taneous observation Yt at any time t.Formally, for any t ∈ I , there exists a probability kernel π̃ : Y → Π such that

πt = π̃t (du | Yt) (2.38)
This kind of policy is sometimes called Markovian policy. The set of all admissibleMarkovian policies is denoted A M

Π .
In fact, definitions 2.2.4 and 2.2.5 from the control process section (2.2.3) areparticular cases of the definitions 2.2.9 and 2.2.10 for the policy.The next section introduces a foundational concept in control theory: theDynamic Programming Principle. This principle allows for the solution of theoptimal control problem in a recursive manner.

2.2.6 Dynamic Programming Principle
Background

The 12-page preface to Richard Bellman’s seminal book Dynamic Programming(R. E. Bellman 1957) is a great way to get started with the concept DynamicProgramming (DP). Some elements of the author’s introduction are given here.
Factually, the term “Dynamic Programming” refers to a specific frameworkfurnishing a “versatile tool” to deal with themathematical theory of multi-stagedecision processes. A multi-stage decision process is a process that is control-led at several stages: decisions or controls are made to modify the underlying
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dynamics. In continuous time, a controlled process such as (2.1) is viewed asa process on which an infinite number of decisions is made over the allottedtime.
On the first hand, the notion of “programming” traditionally reflects the actor process of making plans or scheduling. In fact, it is intrinsically linked to theconcept of planning. This naturally contains the decision-making part of thetopic.On the other hand, the term “dynamics” translates the temporal propertyof the method to solve control problems. In Bellman’s own words, “time playsa significant role” and “the order of operations may be crucial” in Dynamic Pro-gramming.
A cornerstone result of this theory is given by the so-called principle of opti-mality also known as Dynamic Programming Principle or functional equations(Puterman 2014). Ronald Howard calls it the Recurrence Relation in his found-ing book Howard 196022.The following section is devoted to the statement of this principle

Mathematical Formulation

First of all, here the dynamics are supposed to be Markovian. The followingremark gives further details on this assumption.
Remark 2.2.16 (Markovian Assumption). To formulate the Dynamic Program-ming Principle, the dynamics are assumed to be Markovian as well as the policywhich belongs to A M

Π . As Kolmogorov himself stated in his foundational paper Kol-mogoroff 1931, a non-Markovian process can always be transformed into a Marko-vian one by considering a higher-dimensional state space. Section 7.1.3 also providesa development on the Markovian assumption. See also Hale 1971; S. Mohammed1984 for a treatment of delay differential equations as functional differential equa-tions.
In mathematical statistics, the filter of a partially observable (also calledhidden) stochastic process is the conditional distribution of the instantaneousstate given all the past observations. It is sometimes referred to as a beliefstate (X. Chen et al. 2022), Section 7.1.2 provides more details on this concept.Formally, it is defined as follows

Definition 2.2.11 (Filter). For any s, t ∈ I , the filterPY[t,s]

Xt
of the partially observabledynamics (2.1)-(2.2) is defined as

PY[t,s]

Xs
(dx) := P

(
Xs ∈ dx | Y[t,s]

) (2.39)
22Note that both Bellman’s and Howard’s books are considered as edifying works of the se-quential decision-making theory.
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Hence, PY[t,s]

Xs
is the conditional distribution of the state process at time s given allthe observations from t to s.

Remark 2.2.17 (Kalman Filter). The Kalman Filter is an essential instance of thisconcept in the field of control theory and signal processing (Kalman and Bucy 1961).It is obtained in the specific case of linear Gaussian dynamics and observations.
In this part, the optimal objective functional at time t ∈ [t0, T ] is J∗(t, ρ)where ρ is any state distribution supported on X (e.g. ρ = PXt , the initial distri-bution of theMarkovian version of Eq. (2.1)-(2.2)). Thus, when ρ = δ{x}, for some

x ∈ X , the dynamics at time t start from the state x and the optimal objectivefunctional is usually denoted J∗(t, x).In a very general way, the Dynamic Programming Principle (DPP) (R. Bellman1957; R. E. Bellman 1957) can be stated as follows for a finite horizon T < +∞.
Theorem 2.2.1 (Dynamic Programming Principle - Filtered Version). Let T <
+∞ and the dynamics of Eq. (2.1)-(2.2) be Markovian. The optimal objective func-tional J∗ satisfies the Dynamic Programming Principle (DPP).

J∗(t,PXt) = inf
π∈A M

Π

E

[∫ t̃

t

e−γ(s−t0)c(PY[t,s]

Xs
, πs)ds+ J∗(t̃,P

Y[t,t̃]
Xt̃

)

]
(2.40)

for any t ∈ I and t̃ ∈ [t, T ] where
c(PY[t,s]

Xs
, πs) :=

∫
X

∫
U
c(x, u)πs(du)P

Y[t,s]

Xs
(dx) (2.41)

This general version of the DPP with filters is due to El Karoui 1987.When the dynamics are fully observed, the filter has a simple form
PY[t,s]

Xs
(dx) = P

(
Xs ∈ dx | Y[t,s]

)
= P

(
Xs ∈ dx | X[t,s]

)
= δXs (2.42)

where δXs is the Dirac measure at Xs. Naturally, the cost function simplifiesand the classical DPP is recovered.
Theorem 2.2.2 (Dynamic Programming Principle - Fully Observed Version). Let
T < +∞ and the dynamics of Eq. (2.1)-(2.2) be Markovian. The optimal objectivefunctional J∗ satisfies the Dynamic Programming Principle (DPP).

J∗(t,PXt) = inf
π∈A M

Π

E

[∫ t̃

t

e−γ(s−t0)c(Xs, πs)ds+ J∗(t̃,PXt̃
)

]
(2.43)

for any t ∈ I and t̃ ∈ [t, T ] where
c(Xs, πs) :=

∫
U
c(Xs, u)πs(du) (2.44)
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When the time horizon is infinite, a version of the DPP is given by the follow-ing theorem. Recall that J∗(ρ) := J∗(0, ρ).
Theorem 2.2.3 (Dynamic Programming Principle - Infinite Horizon). Let T =
+∞ and the dynamics of Eq. (2.1)-(2.2) be Markovian. The optimal objective func-tional J∗ satisfies the Dynamic Programming Principle (DPP).

J∗(t,PXt) = inf
π∈A M

Π

E

[∫ t̃

t

e−γ(s−t0)c(Xs, πs)ds+ e−γt̃J∗(t,PXt̃
)

]
(2.45)

for any t ∈ I and t̃ ∈ [t,+∞].
Formulas (2.40),(2.43) and (2.45) are the continuous-time versions of the Dy-namic Programming Principle.In simple words and considering the case of Theorem 2.2.2 where PXt = δ{x}for some state x ∈ X (the initial state is known and fixed), the DPP is a consis-tency condition which holds between the value of the optimal objective func-tional for a given state and its possible successors states (Sutton and Barto2018).This recursive relation shows that the expected objective value of the state

x ∈ X , or some distribution over the states PXt at time t, can be split into twocomponents: the immediate cost between t and t̃ which is the integral term in(2.40)-(2.43) and the discounted expected value of the objective starting fromsuccessive states Xt̃.
Hamilton-Jacobi-Bellman

By letting t̃ → t, a differential form is obtained from the DPP equations. It yieldsa second order, nonlinear partial differential equation called Hamilton-Jacobi-Bellman equations (HJB).23A smooth solution of the HJB equation is a candidate solution of the DPP equa-tion. The so-called verification theorem shows that this solution coincides withthe optimal objective function of the DPP. Themain drawback of this approachis that optimal objective functions are not smooth in general (Pham 2009) thusnot all regular HJB solutions can represent optimal objective functions.Consequently, a type of weak solutions of partial differential equations calledviscosity solutions has been developed in the 1980s by Michael Crandall andPierre-Louis Lions as a suitable framework to study stochastic control prob-lems (Bardi and Capuzzo-Dolcetta 2008; Trélat 2005).The link from the continuous time to the discrete time point of view startwith the following section.
23The equation is not presented here for the sake of brevity.
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2.3 Sampling
Even though many real-life control systems are continuous in time, it is some-times practical to transport the framework in the discrete-time realm. Notably,this widens the range of possible methods to solve the control problem, at theprice of approximation errors. Moreover, it allows also representing the prob-lem from an analogue signal to a numeric signal point of view (Salomon 2010).
2.3.1 From Analogue to Digital
An analogue signal represents a continuously variable physical quantity. In prac-tice, this signal is first sampled and a sequence of points is obtained. The setof those chronologically ordered measurements is called the digital signal.The idea of sampling consists of defining a discrete time system such thatthe trajectories of this discrete time system and its corresponding continuoustime system coincide at the sampling times (Grüne and Pannek 2011, Chapter2). This control setup is also known as sampled-data systems.
Time Partition

With this in mind, the interval I = [t0, T ] ⊂ R+ is discretised with a sequence of
K ∈ N∗ time points representing sampling instants. Let Jt0, KK denote the setof integers from t0 to K , denoted by Jt0, KK = {t0, . . . , K}. If K = +∞, then
Jt0, KK = N.
Definition 2.3.1 (Deterministic Time Partition). LetK ∈ N∗. A deterministic timepartition is a collection (sk)

K
k=0 of time points in I such that
t0 ≤ s0 < s1 < . . . < sK ≤ T (2.46)

Note that whenK = {+∞}, the collection is an ascending sequence of elements inthe interval I .
Remark 2.3.1 (Discrete-time Indexing). Henceforth, a discrete time stochastic pro-cess (X̃sk)

K
k=0 that is indexed by a deterministic time partition (sk)

K
k=0 shall be di-rectly indexed by the index k of the time points sk such that the stochastic processis denoted (X̃k)

K
k=0. However, the time partition indexing is kept for the rest of thischapter to stress the link between the continuous-time and discrete-time processes.

Parenthetically, it is important to identify conditions under which the sam-pled sequence faithfully represents the original signal. An important theorem,called Shannon-Nyquist, gives conditions under which the original signal canbe reconstructed. This sampling theorem is the bridge between the analogue(physical) world and the discrete-time (computational) world of digital signalprocessing.
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There is a whole theory called Signal Processing treating the question of sam-pling and other important related problems. The book Brémaud 2001 is a greatintroduction, and the above-mentioned theorem is presented there.Nonetheless, a more general type of discretisation can be considered.
Random Time Partition

Some sampling procedures may be subject to irregularity or perturbations. Inaddition, the sampling times can themselves be controlled by an external agent.Thus, it can be beneficial to work with random sampling times24 which are spec-ified by a random time partition.
Definition 2.3.2 (Random Time Partition). Let K ∈ N∗. A random time partitionis a collection (κk)

K
k=0 of I-valued random variables such that

t0 ≤ κ0 < κ1 < . . . < κK ≤ T (2.47)
Note that when K = {+∞}, the collection is an increasing sequence of randomvariables in I .

The reader is invited to think of a random time partition as a noisy versionof a deterministic time partition. For instance, a Gaussian noise can be addedto the deterministic time partition to get a perturbed but still ordered partition.This would represent the potential jitter in the sampling times.
Example 2.3.1. Let (sk)Kk=0 be a deterministic time partition. A noisy time partition
(κk)

K
k=0 is obtained by adding a Gaussian noise to the deterministic time partition

κk ∼ N
(
sk, σ

2
sk

) (2.48)
where σ2

sk
∈ R+ is chosen small enough to keep the order of the time points (thiscan be probabilistically quantified, but there exists always a positive probability ofhaving a permutation since the support of the normal distribution is unbounded).A better choice may be to consider finite support distributions or to define thisrandom partition recursively.

Indeed, as suggested in Example 2.3.1, the choice of the noise distribution isnot trivial. Moreover, the time partition can be generated dynamically, basedon previous data.As a matter of fact, the time partition can represent the moments wherethe system is interrogated25. Possibly, it could define the times when the con-trol process is updated. Thus, sampling times are also called decision times ordecision epochs. This gives rise to the concept of inter-decision times.
24In probability theory, those are called stopping times.25Measured or probed.
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Definition 2.3.3 (Inter-decision Time). The inter-decision time is the time elapsedbetween two consecutive decision times (or sampling times).For a random time partition (κk)
K
k=0, the inter-decision times are the collection

(ηk)
K
k=1 of random variables such that

ηk := κk − κk−1 (2.49)
Remark 2.3.2. In the deterministic case,

ηk := sk − sk−1 (2.50)
Now, core components of the sampled version of the continuous time con-trolled stochastic process are defined: the discrete time distributions and tran-sition probabilities. They provide amechanism to describe randommotion (Re-vuz and Yor 1999).

2.3.2 Discrete time Distributions and Transition Kernels
Initial Probability Distributions

For some time partition s−rX = t0 − τX < . . . s-i < . . . < s-1 < s0 = t0, with rX ∈
N∗, of the history function domain [t0 − τX , t0], the initial probability distributionof the state process is denoted PXs-rX ,...,Xs0

(dx-rX , . . . , dx0).The initial observation Yt0 is determined by the initial state as stated in (2.2)
PYt0

(dy0) := δg0(X0) (2.51)
The initial inter-decision time η0 is t0.

Pη0 (dσ0) := δ{t0} (dσ0) (2.52)
Discrete-time State Transition Probability

The system (2.1) considered in thismanuscript is stationary (the operator f doesnot depend on time). Thus, a time independent (a.k.a. homogeneous) transi-tion probability can be defined. However, this transition kernel depends onthe random inter-decision time ηk whose realisation σ ∈ S determines the du-ration before the next decision time.For any k ∈ J0, KK, the discrete-time state transition probability is defined as
P(dx′′ | x, x′, u, σ) := PXsk+ηk

(dx′′ | Xsk = x,Xsk−τX = x′, Usk = u, ηk = σ)

= PXsk+σ (dx
′′ | Xsk = x,Xsk−τX = x′, Usk = u)

= PXσ (dx
′′ | X0 = x,X−τX = x′, U0 = u) (by stationarity)(2.53)for any inter-decision time σ and sk ∈ I . Thus, P is independent of k.This collection of probability measures that are (measurably) indexed (here by
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the elements inX×X×U×S) are called transition kernels or transition functionsand plays a fundamental role in the stochastic process theory.
Now, detailed explanations of this unusual definition ofP are given. The fol-lowing description is inspired by Puterman 2014, Chapter 11 and the referencescited therein.In the scope of this thesis, the processes (Xκk

)Kk=0 and (Uκk
)Kk=0 are consid-ered as sampled versions of the continuous-time processes (Xs)s∈I and (Us)s∈I .Those discrete-time processes are called sampled processes, decision processes,or embedded processes, while their continuous-time counterparts are called nat-ural processes or underlying processes.This distinction underlines the classical control settings where it is not pos-sible nor necessary to control the system at any time. Sometimes, what tran-spires between decision epochs provides no relevant information to the deci-sion maker. In general, the system state (natural process) may vary betweendecision epochs. However, the control is only allowed at sampling times (de-cision process). An important instance of such a setting is when the controlprocess is not continuous but piecewise constant (a.k.a. jump process) andthe decisions performed are the modifications of the control signal. This is ausual choice, and this will be the case for all the work presented in this thesis.Additionally, the approach examined here enables the continuous-time natureof the system dynamics to be maintained.

The process (Xs)s∈I equipped with the random time sequence (κk)
K
k=0 suchthat (Xκk

)Kk=0 is a Markov chain26 is called a semi-Markov decision process (SeeLévy 1954; Harlamov 2004, for the uncontrolled case).Here, the random variableXκk
is measurable w.r.t. the productFX ⊗FI ofthe σ-algebraFX endowing the state spaceX and the σ-algebraFX generatedby the intervals on I = [0, T ].27 Then, for any ω ∈ Ω, the point Xκk(ω)

(ω) ∈
X represents the value of the stochastic process X (ω) = (Xs (ω))s∈I at therandom time κk (ω).
Discrete-time Inter-decision Time Transition Probability

The transition kernelO specifies the inter-decision time conditional distributionfor any k∈J0, KK.
O(dσ | x, x′, u) := Pηk (dσ | Xsk = x,Xsk−τX = x′, Usk = u) (2.54)

There are multiple interesting cases to consider. For instance, the inter-decision times conditional distribution is independent of the state and control
26In this case the policy and the inter-decision times are necessarily Markovian.27Basically, this means the random variable Xκk

is indexed by a random time κk. Conse-quently, this variable carries information relative to events in both the state space and thetime interval.
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processes (O(dσ | x, x′, u) = O(dσ)) for all (x, x′, u) ∈ X × X × U . Also, thedependence on u ∈ U highlights the impact of an exogenous agent (the sam-pler) on sampling times. Another typical case is when the inter-decision timesdistribution is degenerated (O(dσ) = δ{s′}(dσ)) for some s′ ∈ I . In this case,the sampling corresponds to a deterministic, equispaced time partition.Another important historical and seminal case comes up when P is Marko-vian where P(dx′′ | x, x′, u, σ) = P(dx′′ | x, u, σ) for all (σ, x, x′, u) ∈ S × X ×
X × U .Originally, the introduction of the inter-decision times η was motivated by theneed to model problems where the system state changes at random, irregulartimes. The duration for which a stochastic process stays in the same state iscalled sojourn time or exit time.Notable examples are queueing control and equipment maintenance thatare more naturally modelled by allowing system interaction at random times.Thus, for those problems there is an intrinsic notion of sojourn time, i.e. thetime spent in a state before a transition occurs.In addition, when the sojourn time in a specific state, for a finite state space, (re-spectively region, for a continuous state space) follows a geometric distribution(respectively exponential distribution), the embedded state process (Xs)s∈I isnecessarily a Markov chain.Incidentally, the idea of studying processeswithmore general inter-decisiontimes came independently and almost simultaneously from Paul Lévy and Wal-ter Laws Smith in the mid-1950s (Grabski 2016). At that time, certain practicalproblems compelled researchers to seek an adequate mathematical descrip-tion. Attempts to apply Markov models to these problems were sometimesunsatisfactory because the exponential distribution of the sojourn times wasnot always appropriate (Harlamov 2004, Preface).Consequently, the community was looking for processes that are Markovia atdecision times but with inter-decision times that are not necessarily exponen-tial. The semi-Markov process was born.

Again, the use of semi-markov models for modelling dynamics where thesystem state is piecewise constant is not really the aim of the work presentedin this thesis. The state is supposed to vary continuously between decisiontimes. Rather, the inter-decision times will be used in Chapter 5 to construct arandomised dataset of type D = (Xκk
, Uκk

, Xκk+1
)Kk=0 that maximises the infor-mation in a sense which will be precisely defined.

In traditional presentations, the transition law Q of Xκk+1
on X × I is thecentral object of interest. It is given here for the sake of completeness, but itwill not be used in the rest of the document.

Q(dx′′dσ | x, x′, u) := PXκk+ηk
(dx′′dσ | Xsk = x,Xsk−τX = x′, Usk = u, κk = sk)(2.55)Again, this equation can be simplified by the stationarity of the dynamics.
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Remark that this distribution is linked to P and O by
Q(dx′′dσ | x, x′, u) =

∫
dσ

P(dx′′ | x, x′, u, σ′)O(dσ′ | x, x′, u) (2.56)
If P is independent of σ, then

Q(dx′′dσ | x, x′, u) = P(dx′′ | x, x′, u)O(dσ | x, x′, u) (2.57)
This is an example of conditional independence28 of Xsk and ηk given the ran-dom variables Xsk , Xsk−τX and Usk .
Discrete-time Observation Transition Probability

The observation kernel G reads
G(dy | x, x′, u) := PYsk

(dy | Xsk = x,Xsk−τY = x′, Usk = u) (2.58)
Discrete-time Policy

A discretised version of the history process is required to define history-basedpolicies. First of all, the discrete-time history space is defined for k ∈ J0, KK as
H η,X,Y,U

k = (S × X × Y × U)k−1 × S × X × Y (2.59)
Note that the control is excluded from the k-th product.In a similar manner, the discrete-time observable history space is defined as

H η,Y,U
k = (S × Y × U)k−1 × S × Y (2.60)

Let (sk)Kk=0 be a deterministic time partition. A history process is a H η,X,Y,U
kvalued randomvariable representing the sampling history up to time sk definedas

Hη,X,Y,U
sk

=
(
ηs0 , Xs0 , Ys0 , Us0 , . . . , Usk−1

, ηsk , Xsk , Ysk

) (2.61)
Similarly, an observable history process is defined as

Hη,Y,U
sk

=
(
ηs0 , Ys0 , Us0 , . . . , Usk−1

, ηsk , Ysk

) (2.62)
A point in the history space H η,X,Y,U

k is denoted by
hη,X,Y,U
sk

=
(
σs0 , xs0 , ys0 , us0 , . . . , usk−1

, σsk , xsk , ysk
)
∈ H η,X,Y,U

k (2.63)
28In probability, two objects (events, random variables, σ-algebras) are independent if theirjoint distribution is the product of their marginal distributions. Inspired by common sense,two events are independent if the probability of their joint occurrence is the product of theirindividual probabilities.
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Again,
hη,Y,U
sk

=
(
σs0 , ys0 , us0 , . . . , usk−1

, σsk , ysk
)
∈ H η,Y,U

k (2.64)
Other spaces such as H Y,U

k and their corresponding points and random vari-ables can be defined in a similar manner. In the case K = {+∞}, the limitspace H η,X,Y,U
∞ is defined as

H η,X,Y,U
∞ = (S × X × Y × U)N (2.65)

and the associated objects similarly (e.g. Hη,X,Y,U
∞ , hη,X,Y,U

∞ are sequences in-dexed by N).
Echoing the continuous-time policy definition in Definition 2.2.6, a discrete-time policy is defined as follows

Definition 2.3.4 (Discrete-time Policy). A discrete-time policy denoted (πk)
K
k=0 isa measure-valued discrete-time stochastic process such that πk ∈ Π for any k ∈

J0, KK.
Definition 2.3.5 (Discrete-time History-dependent Policy). A discrete-time hi-story-dependent policy (πk)

K
k=0 is a discrete-time policy such that for any k ∈ J0, KK,

it is a function of the past trajectory of the observation-control process Hη,Y,U
k .Formally, there exists a mapping π̃ : H η,Y,U

k → Π such that
πk = π̃k

(
du | Hη,Y,U

k

) (2.66)
Thus, for ω ∈ Ω,

πk (ω) = π̃k

(
duk | Hη,Y,U

k (ω)
)
= π̃k

(
duk | hη,Y,U

k

) (2.67)
which writes

πk (ω) = π̃k

(
duk | σs0 , ys0 , us0 , . . . , usk−1

, σsk , ysk
) (2.68)

The definition for Markovian policies is straightforward.
Definition 2.3.6 (Discrete-timeMarkovian Policy). A discrete-timeMarkovian pol-icy (πk)

K
k=0 is a discrete-time policy such that for any k ∈ J0, KK, it is a function ofthe current state Xk. Formally, there exists a mapping π̃ : X → Π such that

πk = π̃k (du | Xk) (2.69)
Thus for ω ∈ Ω,

πk (ω) = π̃k (duk | Xk (ω)) = π̃k (duk | xk) (2.70)
2.3.3 Discrete-time Process distribution
In this part, the Markovian case is considered

P(dx′′ | x, x′, u, σ) = P(dx′′ | x, u, σ) (2.71)
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Markovian case

In the Markovian case, τX = 0 and τY = 0, thus
P(dx′′ | x, x′, u, σ) = PXsk+σ (dx

′′ | Xsk = x, Usk = u, ηsk = σ) = P(dx′′ | x, u, σ)(2.72)and
O(dσ | x, x′, u) = Pηk (dσ | Xsk = x, Usk = u) = O(dσ | x, u) (2.73)

and
G(dy | x, x′, u) = PYsk

(dy | Xsk = x, Usk = u) = G(dy | x, u) (2.74)
and
Q(dx′′dσ |x, x′, u) = PXκk+ηk

(dx′′dσ |Xsk = x, Usk = u, κk = sk) = Q(dx′′dσ |x, u)(2.75)Notably, the initial probability PXs-rX ,...,Xs0
(dx-rX , . . . , dx0) does not generate ahistory function any more and boils down to the probability PX0 (dx0).

Now, the probability distribution PHη,X,Y,U
sk

of a random history Hη,X,Y,U
sk

=(
ηs0 , Xs0 , Ys0 , Us0 , . . . , Usk−1

, ηsk , Xsk , Ysk

) for any finite k ∈ J0, KK\{+∞} can bewritten in a useful recursive form involving only initial probabilities and transi-tion kernels.
Proposition 2.3.1 (PO-SMDP Distribution). Let k ∈ J0, KK \ {+∞}, the distribu-tion of the history process Hη,X,Y,U

sk
is given by

PHη,Y,U
sk

(dσs0 , dxs0 , dys0 , dus0 , . . . , dσsk , dxsk , dysk)=Pηs0
(dσs0)PXs0

(dxs0)PYs0
(dys0)

πs0(dus0 | ys0)O(dσs1 | xs0 , us0)P(dxs1 | xs0 , us0)G(dys1 , | us0xs1)

πs1(dus1 | hη,Y,U
s0

, ys1) . . . . . . πsk−1
(dusk−1

| hη,Y,U
sk−2

, ysk)O(dσsk | xsk−1
, usk−1

)

P(dxsk | xsk−1
, usk−1

)G(dysk , | uskxsk) (2.76)In the case K = {+∞}, the distribution PHη,X,Y,U
∞

of the history process Hη,X,Y,U
∞ isan extension29 of the finite dimensional distributions given by (2.76). of the finitedimensional distributions given by (2.76).

Proof. The first part of the proposition is obtained by applying the chain rulesfor conditional distributions. Then, the probability distribution can be extendedto the infinite horizon case by the Ionescu-Tulcea Theorem (Neveu 1970; Klenke2007).
29Here, an extension means that the infinite dimensional probability measure PHη,X,Y,U

∞
isequal to the finite dimensional probability measure PHη,X,Y,U

sk
on the subspaces of possible

trajectories of size k ∈ N (called k-dimensional marginal distributions or projections).
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The recursive formula (2.76) of Proposition 2.3.1 is useful to sample the his-tory process and implement Monte Carlo methods (Stoehr 2017). Moreover, itis a core component of the Markov Decision Process (MDP) and their generali-sation (PO-MDP, SMDP, etc.).The extension to the non-Markovian case is challenging.

2.4 Simulation and Numerical Approximation
In the previous section, the shift from the continuous-timeworld to the discrete-time has been motivated by the necessity to measure and process the signalthrough a simplified and more tractable representation.On the other hand, it is not always possible nor desirable to interact withthe real systemdirectly. A variety of reasons can be invoked: the high cost of ex-periment, the danger of the environment, the difficulty of accessing the system,the need for reproducibility, and the necessity of trying a large number of inde-pendent scenarios30, (see Bélanger, Venne, and Paquin 2010, for arguments inthe domain of Real-Time Simulation).In this context, numerical simulations are essential to overcome these tech-nical limitations. Despite being subject to inaccuracies, their proficiency hasbeen proven in numerous fields such as plasma control (Degrave et al. 2022),Robotics (Choi et al. 2021), and more broadly in Physics and Engineering (Stein-hauser 2013). These simulations can also be computationally costlywhile requir-ing calibration31 (parameter estimation). Thus, understanding and analysingthe different simulation schemes is important to anticipate outcomes and todesign efficient algorithms.The field of Numerical Analysis (Legendre 2021) is the theoretical backboneof simulation engineering. Its purpose is to design and analyse numerical calcu-lation methods or algorithms. This section presents the basic methodology toapproximate the continuous-time controlled stochastic process (2.1)-(2.2) by itsdiscrete-time counterpart. A complete presentation of SDE numerical approxi-mation is given in Kloeden and Platen 1992. The paper Buckwar 2000 developsthe theory for the delayed case (SDDE).
2.4.1 Approximation with Delayed Dynamics and the Euler-

Maruyama Scheme
The continuous-time controlled stochastic process (2.1)-(2.2) is approximatedby a discrete-time controlled stochastic process through the standard Euler-

30In statistics, this is linked to the notion of statistical significance (M. Hoffman 2015; Colas,Sigaud, and Oudeyer 2018).31In robotics, this is often called Sim2Real transfer or reality gap (Koos, Mouret, and Doncieux2010; Höfer et al. 2021).
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Maruyama scheme.32This scheme is the standard approach for SDE numericalapproximation.Delay differential equations lead to various complications in their solutionfrom both the theoretical and numerical points of view (Bellen and Zennaro2013). The main difficulty is due to the delay term τX which is in general un-known or unpredictable (sometimes τX depends on the time or the state). Sim-ilar difficulties arise in the observation process with the delay term τY .The first approaches to the numerical solution of deterministic DDE in thesense of (2.11) go back to the 1950s. Indeed, the seminal approach of Elsgolts1964 imposed serious constraints on the time partition a.k.a. time mesh.Given a sequence of N points forming a deterministic time partition33 (tk)Nk=0 ,it can be imposed that for all k ∈ J0, NK, either tk − τX < t0 or tk − τX ∈
(tk)

N
k=0 (a time partition of this type is called τX -valid). In this way, the followingEuler approximation of the state process is well-defined. The constraint can bereinforced by requiring that the time partition is also τY -valid.

Definition 2.4.1 (Euler-Maruyama Approximation of the General Dynamics).For a τX -valid time partition (tk)
N
k=0 with time step size δtk = tk+1 − tk, define

τk = tk − τX .The general discrete-time approximation of the state process is given by:
Xtk+1

= Xtk + f (Xtk , Xtk−τX , Utk) δtk + ϵX(Xtk , Utk) δWtk , (2.77)
where δWtk = Wtk+1

−Wtk are the Brownian increments.Similarly, for the observation process and a time partition that is τY -valid, thediscrete-time approximation is:
Ytk+1

= Ytk + g (Xtk , Xtk−τY , Utk) δtk + ϵY (Xtk , Utk) δW
2
tk
, (2.78)

where δW 2
tk
are the Brownian increments associated with the observation noise.

Since the increments are independent and normally distributed, the recur-sive formula (2.77) and (2.78) can be simplified with the following remark.
Remark 2.4.1 (Euler-Maruyama Scheme). The discrete-time approximation of thestate process (2.77) and observation process (2.78) can be rewritten as:{

Xtk+1
= Xtk + f (Xtk , Xtk−τX , Utk) δtk +N (0, ϵX(Xtk , Utk))

Ytk+1
= Ytk + g (Xtk , Xtk−τY , Utk) δtk +N (0, ϵY (Xtk , Utk))

(2.79)
whereN (0, ϵX(x, u)) is a Gaussian process with covariance operator ϵX(x, u).34Thenoise for the observation process is defined similarly.

32Simply the extension of the Euler method to the stochastic differential equation case.33In the remaining, the time mesh will always be a deterministic time partition. For a modernexample of adaptive stochastic mesh construction, see Kelly and O’Donovan 2024.34Remember, ϵX and ϵY are operator-valued mappings. In the finite-dimensional case, theyare positive definite matrices. They define quadratic forms.
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By defining discrete-time dynamics operators, the recursive formulationscan be simplified further.
Definition 2.4.2 (General Discrete-time Dynamics). Let the discrete-time dynam-ics operator F defined as

F := Id+ fδtk (2.80)
and define the observation operator G similarly as

G := Id+ gδtk (2.81)
Suppose that the time delay τX allows for a τX -valid time partition, and the sameholds for the observation process with τY . Then, the state delay index is defined as

rX := τX with tk − τX = tk−rX (2.82)
for rX ∈ N∗. Hence, the value k− τX is viewed as an index in the time partition. Theobservation delay index rY is defined similarly.The discrete-time dynamics of the state and observation processes are given by:{

Xk+1 = F (Xk, Xk−rX , Uk) + δtkN (0, ϵX(Xk, Uk)) ,

Yk+1 = G (Xk, Xk−rY , Uk) + δtkN (0, ϵY (Xk, Uk)) .
(2.83)

The discrete-time dynamics provide an approximation to the continuous-time dy-namics over discrete time steps δtk , with noise terms accounting for the randomnessintroduced by the stochastic processes.
In this manner, a discrete-time formulation is obtained from a continuous-time stochastic system.Moreover, since τX -valid time partitions are too restrictive, the followingremark introduces a more general but less accurate approach.

Remark 2.4.2 (Approximation of theDelayed State andObservation Processes).Approximations of the stateXk−rX and observation Yk−rY can be performed whenthe time partition is not τX -valid or τY -valid. For instance, Feldstein 1964 introducedpiecewise constant or linear interpolation for the state process while a similar ap-proach can be applied to the observation process. This construction is based on thevalues of the state and observation processes (Xk)
N
k=0 and (Yk)

N
k=0 at the discretetimes (tk)Nk=0. This results in approximated delayed state and observation processes

X̂k−rX and Ŷk−rX that can be plugged into the discrete-time dynamics of equations(2.83) and (2.79).
Moreover, the linear equispaced time partition is a common choice for nu-merical simulations.

Example 2.4.1 (Equispaced Time Partition). Let δtk = δ for any k ∈ J0, NK. Then,the time partition is equispaced: tk = kδ.
51



Finally, the quantities involving time integrals can also be discretised withRiemann-sum.
Remark 2.4.3 (Riemann Sum Discretization). In the discrete-time approximationof a continuous-time controlled stochastic system, quantities involving time inte-grals can be approximated using the Riemann sum. For a general integral over thetime interval [t, T ] of any integrable function c̃ , the integral∫ T

t

c̃(s) ds (2.84)
can be discretised as a Riemann sum:

N−1∑
k=0

c̃(tk)δtk , (2.85)
where (tk)Nk=0 is a time partition on [t, T ] and δtk = tk+1 − tk is the time step size(see Lamboley 2022, for a reminder on Riemann sums).Similarly, for stochastic integrals the approximation of Remark 2.2.2 given byEq. (2.5) is performed.

2.5 Delay, Sampling Times and Discretisation
Compatibility

Whether for sampling or numerical approximation purposes, time partitionshave been a central element in the previous constructions. Up to know, thespecification of time partitions has been left open except for the τX -validity con-dition in Section 2.4.1. From a practical point of view, some choices of partitionsare rather natural and convenient.Nonetheless, a possible kind of incompatibility between sampling times anddiscretisation times may arise when the sampling times do not coincide withthe discretisation times. Therefore, a notion of compatibility is defined anddiscussed in the following.
In this section, it is supposed that the random sampling times are givenby the random partition (κk)

K
k=0 and the discretisation times are given by the

deterministic partition (tk)
N
k=0. The compatibility condition is now defined.

Definition 2.5.1 (Discretisation and Sampling Times Compatibility). The sam-pling times (κk)
K
k=0 are said to be compatible with the discretisation times (tk)Nk=0when they are a subsequence of the discretisation times (a.s.).

Hence, the compatibility condition ensures sampling is well-defined (withprobability one) for a given discretisation.A common case of compatibility is when the sampling times are the sameas the discretisation times.
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Example 2.5.1 (Sampling-times Equal to Discretisation-times). Let the samplingtimes be equal to the discretisation times, i.e. κk = tk for all k ∈ J0, K]].35 Then, thesampling times are compatible with the discretisation times andK = N .
Consequently, a ubiquitous setting encountered across fields is when thesetwo assumptions hold:
• the time interval is uniformly partitioned as in Example 2.4.1
• the sampling times are the same as the discretisation times as in Exam-ple 2.5.1.

In other words, κ = (tk)
N
k=0 and tk = kδ.The following remark discusses the case where not all points used duringsimulation are sampled.

Remark 2.5.1 (Sampling Frequency). By Definition 2.5.1, being compatible implies
K ≤ N . In that case, the sampling frequency is always lower than the discretisationfrequency.

On the other hand, when the sampling times are not compatible with thediscretisation times, an approximation approach that is similar to the one ofRemark 2.4.2 can be pursued. This way, the sampled quantities are estimatedusing the trajectory described by the discretisation times used for numericalapproximation.

2.6 Conclusion
In this chapter, the continuous-time stochastic control problemwas introduced(Section 2.2). The goal was to set a framework that is general enough to encom-pass the range of problems encountered in this thesis.The continuous-time stochastic control problem was formulated as the so-lution of a stochastic differential equation with delay. The notion of policy (Sec-tions 2.2.4-2.2.5) that generalises the concept of control and that is widely usedin the Reinforcement Learning literature was introduced.In addition, the Dynamic Programming Principle (Section 2.2.6) was outlinedas a central way to solve the continuous time stochastic control problem. Thisprinciple is a key concept in the field of Reinforcement Learning.Then, the question of sampling (Section 2.3) was addressed to link the con-tinuous time problem to the discrete time setting. This gives rise to the conceptof sampled-data systems.

35The notation J0,K]] stands for the set of integers from 0 to K included. This will be usedthroughout the document.
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Finally, the numerical approximation of the continuous time stochastic con-trol problem was discussed (Section 2.4). The compatibility between the sam-pling times and the discretisation times was defined (Section 2.5). This compat-ibility is crucial for the well posedness of the problem.
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3 Learning-based Control with Dis-
crete Decision Processes

This chapter introduces the discrete time point of view of the decision processwhich is widely used in the Learning-Based Control literature.First, the general discrete-time decision process is defined (Section 3.1) to-gether with the discrete time version of Dynamic Programming (Section 3.1.4).The transition probabilities characterisation is presentedwhich connects to thenotions of sampling and data for learning applications (Section 3.1.2).The Learning Theory (Section 3.2) is then introduced in a sufficient generalityto encompass the range of problems encountered in this thesis.Subsequently, the application of the Learning Theory to the optimal controlproblem, namely Learning-based Control, is introduced (Section 3.3). Multipleimportant concepts and paradigms that are used throughout the thesis arepresented, such as the policy iteration procedure or Model Predictive Control.Finally, the chapter concludes with a presentation of the several control-led dynamics that are of interest in the field of control of Dynamical Systems(Section 3.4). All the systems presented in this section are used in the variousnumerical experiments of this thesis.

3.1 Discrete-Time Decision Processes
In this section, discrete-time decision processes are introduced.
3.1.1 General Discrete Decision Process
A general discrete-time formulation of the state and observation dynamics forlearning-based control is given as follows.
Definition 3.1.1 (General Discrete Decision Process - Recurrence). The state pro-cess X = (Xk)k∈N is governed by the following discrete-time stochastic recurrenceequations: {

Xk+1 = F (Xk, Xk−r, Uk) +N (0, ϵX(Xk, Uk))

XJ−r,0K ∼ PXJ−r,0K

(3.1)
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where:
• F : X × X × U → X is the discrete dynamics operator
• r ∈ N is the time delay index
• ϵX is a kernel valued function of X × U . Thus for any x ∈ X and u ∈ U ,
ϵX(x, u) is the kernel of a Gaussian process (a quadratic form). If X is afunction space, the kernel is a covariance operator, otherwise if X is a finite-dimensional space, the kernel is a covariance matrix.

• PXJ−r,0K is the distribution of the history process XJ−r,0K = (X0, . . . , X−r)

The observation process Y = (Yk)k∈N follows a similar discrete-time stochasticprocess: {
Yk+1 = G (Xk, Xk−r, Uk) +N (0, ϵY (Xk, Uk))

Y0 ∼ δG0(X0)

(3.2)
where:

• G : X × X × U → Y is the observation operator
• ϵY is defined similarly to ϵX

• G0 : X → Y is the initial observation operator
This kind of systemwill nowbe referred to as decision processor discrete con-trolled process. The procedure to get a discrete-time controlled process from acontinuous-time random dynamical systemmodelled as a partially observablestochastic differential equation has been described in the previous chapter. No-tably, Remark 2.3.1 and the exposition in Section 2.5 ensure the expression iswell-defined and can be derived from a stochastic delayed differential equa-tion.Notations are kept consistent with the continuous-time case whenever pos-sible, the context should make the distinction clear. For instance, the admissi-ble policy space is still denoted by AΠ and the subset of Markovian admissiblepolicies by A M

Π .
3.1.2 Transition Probabilities Characterisation
In the discrete case, the transition probabilities are given by

P(dx′′ | x, x′, u, σ) := PXk+ηk
(dx′′ | Xk = x,Xk−r = x′, Uk = u, ηk = σ)

O(ds | x, x′, u) := Pηk(ds | Xk = x,Xk−r = x′, Uk = u)

G(dy | x, x′, u) := PYk
(dy | Xk = x,Xk−r = x′, Uk = u)

πk(du | Hη,Y,U
k ) := PUk

(du | Hη,Y,U
k = hη,Y,U

k )

(3.3)
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for any k ∈ N, x, x′, x′′ ∈ X , u ∈ U , σ ∈ N∗. Note the support of the interdecisiontime ηk is now in N∗.There is an alternative formulation of this discrete-time controlled processthat is commonly used in modern literature. In a particular case, this formula-tion is equivalent to the one given in Definition 3.1.1.
Definition 3.1.2 (General DiscreteDecision Process - Transition). The tuple givenby (X ,U ,Y ,P ,G,O, π) is called discrete decision process.

Several important cases of discrete decision processes in the field of controlare now presented.
Partially Observable Semi-Markov Decision Process (PO-SMDP)

When the state transition probability and the observation transition probabilityare Markovian, in the sense
P(dx′′ | x, x′, u, σ) = P(dx′′ | x, u, σ) (3.4)

G(dy | x, x′, u) = G(dy | x, u) (3.5)
for all x, x′, x′′ ∈ X , u ∈ U and σ ∈ N∗, the process is called a Partially ObservableSemi-Markov Decision Process (PO-SMDP).
Partially Observable Markov Decision Process (PO-MDP)

Again, suppose the state and observation transition probabilities are Marko-vian, if the interdecision time transition probability is degenerated to a constantvalue, i.e.
O(ds | x, x′, u) = δ{1}(ds) (3.6)

Then the resulting process is called a Partially Observable Markov Decision Pro-cess (PO-MDP).
Semi-Markov Decision Process

Now suppose that the state is Markovian and the system is fully observable,i.e. the observation operator is the identity operator, G = Id. Equivalently, theobservation transition probability is degenerated on the identity operator, i.e.
G(dy | x, x′, u) = δ{x}(dy) (3.7)

Markov Decision Process (MDP)

Finally, the most important case coined Markov Decision Process (MDP) by theappliedmathematician Richard Bellman in the 1950s is when the system is fullyobservable (3.7) and the interdecision time is degenerated to a constant value
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(3.6). This is also called Controlled Markov Process (CMP) by Dynkin and Yushke-vich 1979. The origin of those processes can be traced back to the work ofRichard Bellman in the 1950’s (R. Bellman 1957; R. E. Bellman 1957) and RonaldHoward in the 1960’s (Howard 1960).
3.1.3 On the Equivalence of Formulations
Consequently, given a system of discrete-time stochastic recurrence equationsgiven by Definition 3.1.1, one can extract transition probabilities as in (3.3) andobtain a decision process in the sense of Definition 3.1.2. Reciprocally, it canbe questioned whether, given a specification of transition kernels as in Defini-tion 3.1.2, a probability distribution P̃ exists such that the transition probabilitiesare determined by the relations in (3.3).The answer is affirmative and guaranteed under weak conditions by theIonescu-Tulcea theorem (Neveu 1970; Loève 1977; Klenke 2007): given the tran-sition probabilities aforementioned, there exists a probability distribution P̃such that the transition probabilities satisfy the relations in (3.3).To go further, the question can be extended to the existence of a systemof stochastic recurrence equations characterised by a state evolution operator
F̃ and an observation operator G̃ such that Xk+1 = F̃ (Xk, Xk−r, Uk, ϵ

k
X) and

Yk+1 = G̃(Xk, Xk−r, Uk, ϵ
k
Y ) where ϵkX and ϵkY are i.i.d. random variables36 . As aresult, it would be equivalent to specify either a recurrence equation or a setof transition probabilities. It happens that in the fully observable, Markoviancase (MDP) the existence of the state evolution operator is guaranteed (Gih-man and Skorohod 1979). Both ways have their advantages and drawbacks,in terms of interpretability and practicality (Onésimo Hernández-Lerma andLasserre 1996).

3.1.4 Discrete Control Problem
Here we present the essential elements of the optimal control problem in dis-crete time. A detailed treatment of the general continuous-time case is givenin Chapter 2.
Optimal Control Problem (Discrete Time)

The optimal control problem in discrete time follows a similar structure to thecontinuous-time case, and can be obtained by approximating the time integralby a Riemann sum, (see Remark 2.4.3). The policy π = (πk)k∈N mustminimise acost function defined over a finite (K < +∞) or infinite horizon (K = +∞).
36The existence of such a system is sufficient to ensure the existence of a probability distri-bution P̃ verifying the desired properties.
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The random total cost from step k in discrete time is defined as
Z
(
k,PXJ−r,0K , π

)
=

K∑
i=k

γic (Xi, πi) (3.8)
for any discrete-time step k ∈ J0, KK, where γ ∈ [0, 1] is a discount factor, and
c : X ×U → R is the instantaneous cost function. From the initial step, the totalcost is denoted by Z(PXJ−r,0K , π) = Z(0,PXJ−r,0K , π).This quantity is a random variable, and the expectation of the random totalcost is the objective functional.The typical objective functional in discrete time is then given by

J
(
k,PXJ−r,0K , π

)
= E

[
K∑
i=k

γic (Xi, πi)

]
= E

[
Z
(
k,PXJ−r,0K , π

)] (3.9)
Remark 3.1.1 (Series Convergence). The control problem is also defined for aninfinite horizon, i.e., when K = +∞. In this case, the condition γ < 1 is sufficientto ensure convergence of the sum when the cost function is bounded.

The optimal objective functional in discrete time is then defined as
J∗
(
k,PXJ−r,0K

)
= inf

π∈AΠ

J
(
k,PXJ−r,0K , π

) (3.10)
for any k ∈ J0, KK.Thus, the optimal control problem becomes

J∗
(
PXJ−r,0K

)
= J∗

(
0,PXJ−r,0K

)
= inf

π∈AΠ

E

[
K∑
i=0

γic (Xi, πi)

]
(3.11)

Exactly as in the continuous-time case, when the initial condition is fixed, theoptimal objective functional is given by
J∗ (k, xJ−r,0K

)
= J∗

(
k, δxJ−r,0K

)
= inf

π∈AΠ

E

[
K∑
i=k

γic (Xi, πi) | XJ−r,0K = xJ−r,0K

]
(3.12)The optimal objective from the initial step k = 0 is denoted J∗ (xJ−r,0K
)

=
J∗ (0, xJ−r,0K

).Similarly, for the Markovian case, the optimal objective functional is givenby
J∗ (k, x) = J∗ (k, δx) = inf

π∈AΠ

E

[
K∑
i=k

γic (Xi, πi) | X0 = x

]
(3.13)

Again, J∗ (x) = J∗ (0, x) and this quantity is commonly called optimal value func-tion.
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Another fundamental concept which remains to be introduced is the op-timal expected total cost when both the initial condition and the control arefixed. This mapping is here called optimal Q-function and defined in the Marko-vian case as
Q∗ (x, u) = inf

π∈AΠ

E

[
K∑
i=0

γic (Xi, πi) | X0 = x, U0 = u

]
(3.14)

Given any policy π ∈ AΠ and for k = 0, the value function x 7→ J(x, π) andthe Q-function (x, u) 7→ Q(x, u, π) are defined as the expectation on which theinfimum is taken in the optimal objective functional (Eq. (3.13)) and the optimalQ-function (Eq. (3.14)), respectively.Consequently,
J∗(x) = inf

π∈AΠ

J(x, π) (3.15)
and

Q∗(x, u) = inf
π∈AΠ

Q(x, u, π) (3.16)
for any x ∈ X and u ∈ U .
Maximum Entropy Control Problem

The Maximum Entropy Control Problem in the discrete-time case is charac-terised by the objective functional
JH

(
k,PXJ−r,0K , π

)
= E

[
K∑
i=k

γic (Xi, πi)− αHH [πi]

]
(3.17)

This objective is referred to as the soft objective functional in the RL litera-ture Haarnoja, Tang, et al. 2017. The optimal soft objective functional followsthe same notation rules as in the standard case (a.k.a. hard objective func-tional). An important particular case is the optimal soft value function, definedas
J∗
H (x) = inf

π∈AΠ

E

[
K∑
i=0

γic (Xi, πi)− αHH [πi] | X0 = x

]
(3.18)

Thus, the optimal soft Q-function is defined as
Q∗

H (x, u) = inf
π∈AΠ

E

[
K∑
i=0

γic (Xi, πi)− αHH [πi] | X0 = x, U0 = u

]
(3.19)

In discrete time, the dynamic programming principle is referred to as theBellman equation. Again, in this case the dynamics are supposed to be Marko-vian thus PJk−r,kK = PXk
for any k ∈ N, where PJk−r,kK is the distribution of thehistory process XJk−r,kK = (Xk−r, . . . , Xk).
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Theorem 3.1.1 (Bellman Equation). The optimal objective functional satisfies theDynamic Programming Principle
J∗ (k,PXk

) = inf
π∈A M

Π

E

[
k+j∑
i=k

γic (Xk, πk) + J∗ (k + j + 1,PXk+j+1

)] (3.20)
for any k ∈ J0, KK, where j ≥ 0.Moreover, a crucial functional equation can be obtained for the optimal objec-tive functional whenK = +∞, known as the Bellman equation

J∗ (k,PXk
) = inf

π∈A M
Π

E

[
k+j∑
i=k

γic (Xk, πk) + γj+1J∗ (k,PXk+j+1

)] (3.21)
Thus for j = 0, the Bellman equation is

J∗ (k,PXk
) = inf

π∈A M
Π

E
[
γkc (Xk, πk) + γJ∗ (k,PXk+1

)] (3.22)
and if k = 0, the Bellman equation is

J∗ (PX0) = inf
π∈A M

Π

E [c (X0, π0) + γJ∗ (PX1)] (3.23)
These latter equations are fundamental in the dynamic programming the-ory and define an infinite dimensional (function space) fixed-point problem(this fixed-point property will be used in the next chapters to build learning-based control algorithms). Hence, the DPP is sometimes called the functionalequation in R. E. Bellman 1957.Many learning algorithms are based on the Bellman equation. The equa-tions (3.21) and (3.23) are the basis of learning based control theory and algo-rithms (Sutton and Barto 2018; A. Agarwal, Jiang, and Kakade 2019; Bensoussan,Y. Li, et al. 2020; Meyn 2022). Chapter 6 discusses an extension of the Bellmanoperator to the random total cost defined in Eq. (3.8).The next section will focus on the learning theory before presenting thelearning based control approaches.

3.2 Learning Theory, Generalisation and Complex-
ity Measures

3.2.1 Statistical Learning
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Notations and Definition

Basically, three elements are essential in learning theory37 (Shalev-Shwartz andBen-David 2014): a dataset D̄, a model f̄ , and a learning task ℓ̄.38First, the dataare modelled by some random variable Z̄ with distribution PZ̄ with values ina domain Z̄ . The dataset D̄ usually containsmD̄ identically and independentlydistributed (i.i.d.) samples39 Z̄ , i.e. D̄ =
(
Z̄1, . . . , Z̄mD̄

) where Z̄i ∼ PZ̄ . Thus, PDis the joint distribution of the elements of the dataset D̄. Second, the modelis an element f̄ of the hypothesis class F which is often infinite dimensional.Third, the learning task is defined by a loss function ℓ̄ which quantifies the taskerror the model f̄ makes for a given observation Z̄.
Definition 3.2.1 (Loss function). A loss function is a mapping ℓ̄ : F × Z̄ → R+that maps a hypothesis and an observation to a positive real number. Sometimes,the loss function is referred to as a learning task.
Example 3.2.1 (Quadratic loss in Supervised Learning). Regarding supervisedlearning one has Z̄ = X̄ × Ȳ , the observation and label spaces and possibly F =(
f̄θ
)
θ∈Θ with Θ ⊂ Rd

θ some parameters space of dimension dθ associated to the
quadratic loss ℓ̄(f̄θ, (x, y)) = (f̄θ(x)− y)2 for any (x, y) ∈ X̄ × Ȳ .
Generalisation

As stated in Mohri, Rostamizadeh, and Talwalkar 2018, “Machine Learning isfundamentally about generalization”. Roughly, this can be understood as theability of a model (or hypothesis) f̄ to perform well on unseen data or data notused to estimate the model. In the standard supervised learning setting, thegeneralisation error is defined on the setF of all possiblemodels, the so-calledhypothesis set (this set is traditionally denoted by H but this symbol is kept forthe entropy).
Definition 3.2.2 (Generalisation Error). The generalisation error J̄ , also called therisk, of a hypothesis f̄ ∈ F is defined as

J̄(PZ̄ , f̄) = EPZ̄
[ℓ̄(f̄ , Z̄)] (3.24)

where EPZ̄ denotes the expectation w.r.t. the distribution PZ̄ .The optimal generalisation error is defined as
inf
f̄ ′∈F

J̄(PZ̄ , f̄
′) (3.25)

37Here the classical, also known as frequentist, approach is presented. Details and compar-isons between statistical approaches are given in Section 3.2.3.38In this section, notations from statistical learning theory are introduced with a bar over thesymbols to distinguish them from the RL ones.39This hypothesis is sometimes relaxed in the literature (Steinwart, Hush, and Scovel 2009).
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for a fixed data distribution PZ̄ .If the optimal generalisation error (3.25) is attained by a model f̄ ∗, it is calledthe oracle model.
In other words, learning is the process of finding a hypothesis f̄ ∈ F from adataset D̄ that minimises the generalisation error J̄ , hence being by definitiona generalisation problem.

Example 3.2.2 (Mean square error (MSE)). Regarding the supervised learningsetting with quadratic loss, one obtains the commonly called mean square error
J̄(PX̄,Ȳ , f̄) = EPX̄,Ȳ

[(f̄(X̄)− Ȳ )2] where Z̄ = (X̄, Ȳ ) has been chosen.
Learning-based Control case

In the case of reinforcement learning, one can be interested in the generali-sation error in terms of regret (Y. Duan, Jin, and Z. Li 2021) for a given policy
f̄ = π̄ ∈ F = Π. There are several definitions of this concept in the literature,in a general form it can be defined as
Definition 3.2.3 (Regret). The regret for a given algorithm A is defined as

Regret (π̄) = J̄ π̄ −min
π̄∈F

J̄ (π̄) = J̄ (π̄)− J̄ (π̄∗) (3.26)

Hence the regret can be generally understood as the spread between theperformance when taking optimal decisions and the target policy performance.In the next section, a rigorous answer to the fundamental question of learn-ing theory, pioneered by Leslie Valiant (Valiant 1984), is presented.
3.2.2 Probably Approximately Correct Learning
The principal objective of statistical learning is to provide bounds on the gener-alisation error, so-called generalisation bounds. In what follows, it is assumedthat an algorithm A returns a hypothesis f̄ ∈ F from a dataset D̄. Note thedataset D̄ is random and the algorithm A is a randomised algorithm.As the hypothesis set F typically used in machine learning is infinite, a prac-tical way to quantify the generalisation ability of such a set must be found. Thisis done by introducing complexity measures, which enable the derivation of gen-eralisation bounds.
Definition 3.2.4 (Complexity measure). A complexity measure is a mappingM :
F → R+ that maps a hypothesis to a positive real number.

According to Neyshabur, Bhojanapalli, et al. 2017 from which this formal-ism is inspired, an appropriate complexity measure satisfies several proper-ties. In the case of parametric models f̄θ ∈ F(Θ) with θ ∈ Θ ⊂ Rdθ , it should
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increase with the dimension dθ of the parameter space Θ as well as being ableto identify when the dataset D̄ contains totally random, spurious, or adversar-ial data. Moreover, it can distinguish between models learnt with zero trainingerrors and the same dataset D̄ but different final local optima θ∗ obtained, forinstance, through a randomised optimisation.A simple example of complexity measure for a parametric hypothesis πθ isthe feature dimension of the parameterM(f̄θ, D̄) = dθ or its ℓ2-normM(f̄θ, D̄)
= ∥θ∥2. More generally, complexity measures can also be defined for a wholehypothesis set F asM(F , D̄). Various examples of such complexity measuresexist, such as the fundamental Vapnik-Chervonenkis (VC) dimension in binary clas-sification and the Rademacher complexity M(f̄ , D̄) = Rad(F) = Rad(f̄) for any
f̄ ∈ F that measures the degree to which a hypothesis set F correlates withrandom noise, in a larger scope than classification (Mohri, Rostamizadeh, andTalwalkar 2018).Given an algorithm A, one can wonder if it is able to return a hypothesis
f̄ ∈ F from a dataset D̄ of size mD̄ such that the generalisation error J(f̄) isclose to the optimal generalisation error minf̄ ′∈F J̄(f̄ ′). This is the goal of theProbably Approximately Correct (PAC) learning framework (Valiant 1984) which isstated below for the sake of exhaustiveness.
Definition 3.2.5 (PAC Learning). A hypothesis setF is PAC learnable if there existsa learning algorithm A such that for any η̄, δ̄ > 0 and any distribution PZ̄ over thedata, there exists a sample size mF ,η̄,δ̄ such that running A with a given randomsample D̄ of size mD̄ ≥ mF ,η̄,δ̄, the algorithm A returns a hypothesis f̄ ∈ F suchthat

PZ̄

[
J̄
(
f̄
)
− min

f̄ ′∈F
J̄
(
f̄ ′) ≤ η̄

]
≥ 1− δ̄ (3.27)

One can note how PAC learning relies on sample-complexity through thenumber of samplesmF ,η̄,δ̄.
3.2.3 Estimation
The field of statistics is vast and several important approaches have been de-veloped creating a whole range of subfields. In this part, the problem of learn-ing, which is an instance of statistical estimation theory, is thus categorised.Throughout the different chapters of this thesis, different kinds of estimationapproaches belonging to different statistical paradigms are used. Hence, it isappropriate to give concise explanations of these approaches here.Let F be the space mentioned in Section 3.2.1 that is assumed to be a sub-manifold of an infinite dimensional manifold (such that a notion of dimensionon this space (dim(F)) can be defined). In practice, the hypothesis space Frepresents the class of candidate models that can be learnt from the data, andthe goal is to find the best procedure A to perform the learning task, i.e. to
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find the minimiser of the generalisation error J̄ in F or at least finding a modelclose to this minimiser.Multiple categories of estimation, depending on the nature of the hypothe-sis space F , are commonly defined.
Parametric Estimation

In the case where the hypothesis space F is finite dimensional (dim(F) = dθ <
∞), the estimation problem is called parametric estimation. The usual case iswhen F = Θ ⊂ Rdθ . Note that any family indexed by a finite dimensional setof parameters (e.g. (f̄θ)θ∈Θ) can be seen as a parametric family. The traditionof considering the problem of statistical estimation as the estimation of a finitenumber of parameters goes back to Sir Ronald Aylmer Fisher.
Non-parametric Estimation

On the other hand, parametric models sometimes provide inaccurate repre-sentations of the underlying statistical structure (Tsybakov 2008). Thus, it canbe more appropriate to consider the estimation on a functional space directly(dim(F) = ∞). In that case, the estimation problem is called non-parametricestimation.
Frequentist Statistics

In the above presentation, the loss function considered in Definition 3.2.1 isa function of two elements: a model (called hypothesis) f̄ and a data point z̄.Hence, the loss ℓ̄(f̄ , z̄) is parameterised by the input data z̄. Consequently, thecomparison between two models f̄ and f̄ ′ ∈ F is made difficult since no order-ing, even partial, is defined. By averaging the loss over the data distribution PZ̄ ,a partial ordering is defined: this is the frequentist approach.From Definition 3.2.2, the generalisation error is the expectation of the lossfunction w.r.t. the data distribution PZ̄ . The intuition behind this errormeasureis the following. Suppose that some algorithm A returns a hypothesis f̄ froma dataset D̄ =
(
Z̄1, . . . , Z̄mD̄

). The generalisation error averages (integrates)over all possible points that do not necessarily belong to the dataset D̄, suchthat the learning task (the errormetric) depends only on the candidatemodel f̄and the data distribution PZ̄ . Thus, this approach is called classical, or frequen-tist statistical inference. The term “frequentist” appropriately stands for the factthe unknown data distribution PZ̄ can be approximated with its empirical coun-
terpart (called empirical distribution) denoted P̂Z̄ = 1

mD̄

∑mD̄
i=1 δZ̄i

representing
the distribution obtained from the frequencies of the data in D̄.
Hence, the empirical risk ̂̄J D̄(f̄) =

1
mD̄

∑mD̄
i=1 ℓ̄(f̄ , Z̄i) approximates the generali-

sation error.
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Definition 3.2.6 (Empirical Generalisation Error). The empirical generalisationerror is defined as ̂̄J D̄(f̄) =
1

mD̄

mD̄∑
i=1

ℓ̄(f̄ , Z̄i) (3.28)

In this way, the frequentist school defines its elementary notion of optimal-ity: minimising the empirical risk. PAC learning described in Section 3.2.2 is afrequentist approach. This approach has several drawbacks, two of which areparticularly important.First, the classical school supposes the distribution PZ̄ is somehow fixedwhile the associated statistical experiments generating the data are repeatableunder the same conditions. This setting is difficult to verify in practice.Second, the empirical distribution requires a number of samples that growswith the dimension of the input data.40 Consequently, the frequentist approachrequires a large number of samples to be efficient.Other arguments against the frequentist approach are given in the land-mark book of Robert 2007 on the Bayesian view of statistics. Methodologies ofboth schools are used in the work presented in this thesis. The reader inter-ested in the frequentist approach is referred to Barra 1971; M. Hoffman 2015.
Bayesian Statistics

The central idea of Bayesian statistics is to consider the unknown quantity ofinterest (θ∗ in the parametric case or f̄ ∗ in non-parametric case) as a randomvariable41: the hypothesis space F is endowed with a prior distribution (Pf̄∗ inthe non-parametric case or Pθ∗ in the parametric case). This prior distributionrepresents what is known about the hypothesis before observing the data.This randomness shall be understood as the decision maker or agent beliefin the true value of the optimal model. Thus, a distribution Pf̄∗ is defined overthe hypothesis space F . If the hypothesis space is finite dimensional F = Θ ⊂
Rdθ , the prior distributionPθ∗ is defined over the parameter spaceΘ. The choiceof a prior distribution is not trivial, and a considerable part of the Bayesianliterature is dedicated to this topic.Note that the above definition refers to the PAC-Bayesian theory, while theclassic Bayesian theory assigns a prior distribution to the data distribution PZ̄itself. PAC-Bayesian algorithms are motivated by a desire to provide an infor-mative prior encoding information about the expected experimental settingbut still having PAC performance guarantees over all i.i.d. settings.

40This is known as the curse of dimensionality (Bach 2024).41In Bayesian Statistics, the unknown target f̄∗ does not necessarily vary, thus the term “ran-dom” may not be very appropriate. In probability theory, a random variable is defined as ameasurable function from a probability space to a measurable space. Hence, the possibility toassign a value Pf̄∗(BF ) to a regionBF ⊂ F of the hypothesis space which describes how likely
the unknown model f̄∗ belongs to this region is the essential concept in Bayesian statistics.
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The reader interested in the Bayesian approach is referred to Robert 2007and Rousseau 2009.
Estimators

The notion of learning algorithm A is historically associated with the statisticallearning literature, while the statisticians prefer the closely related notion of es-timator. A bit more formally, a learning algorithmA is a mapping that assigns ahypothesis f̄ ∈ F to a dataset D̄ ∈ Z̄mD̄ . In fact, the term estimator generalisesthis concept being a mapping that assigns any object from a dataset.
Definition 3.2.7. An estimator, or a statistic, is a (measurable42) function of adataset D̄.

When the estimation target is an unknown function f̄ ∗ ∈ F , the estimator
is denoted ˆ̄f , and when the target is a parameter θ∗ ∈ F = Θ, the estimator
is denoted θ̂. In those cases, where the estimator returns an element of thehypothesis space F , the algorithm A and the estimator are equivalent. Note
that the estimators are functions of the data, thus ˆ̄f = ˆ̄f(D̄) and θ̂ = θ̂(D̄).Given a class of estimators, how to choose the optimal one, and what is anotion of optimality? A basic tool is the notion of risk or loss function as definedin Section 3.2.1 that allows comparing the performances of different estimators.Notably, an important procedure in the Machine Learning literature is the(stochastic) gradient descent algorithm Mandt, M. D. Hoffman, and Blei 2017to find the optimal estimator if the risk function is differentiable such that thegradient of this empirical generalisation error can be computed. In the workpresented in this thesis, the gradient descent algorithm used on parametricmodels is the Adam algorithm Kingma and Ba 2015.
3.2.4 Decision Theory
Statistical decision theory is concernedwith the problemofmaking decisions inthe presence of statistical knowledge. Classical statistics are directed towardsthe use of sample information (from the data gathered) in making inferenceabout the unknown state of nature or system, represented by the parameter θ∗.In decision theory, this information is coupledwith the system features in orderto make the best decision. In addition to the extracted information, a measureof the decision consequences is performed through the use of a loss function.The choice of function among a class of hypothesis class F is the decision inthe statistical learning theory. The incorporation of the loss function is due toAbraham Wald. In economics, the loss function is called the utility function.

42This ensures a probability measure can assign a probability to the estimator potential val-ues. Estimators are then random variables, they may have a mean and a variance.
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The other kind of information that is not extracted from the statistical ex-periment is called prior information. This information arises from other sourcessuch as knowledge built on past or similar experiments. The approach of statis-tics which seeks to use prior information and is termed as Bayesian analysis.Bayesian analysis and Decision Theory are naturally linked, partly because oftheir common use of information that does not directly result from experimen-tal trials and partly because of theoretical ties. Note also, there is also non-Bayesian Decision Theory and a statistical Bayesian point of view that is notnecessarily linked to Decision Theory. The book Berger 1985 is a classic refer-ence on the subject.
The next part is devoted to the application of learning theory to control prob-lems.

3.3 Learning-based Control
Historically, the first application of learning theory to control problems can betraced back at least to the adaptive control theory (ÅströmandWittenmark 1989)which concerns the design of controllers for controlled systems that dependon unknown quantities such as the dynamics f , the disturbances ϵX and ϵY orany other object in the dynamics presented in (2.1)-(2.2). This definition can beextended to the case of unknown cost functions c or anything that is unknownto the decision maker.Rudolf Kalman (Kálmán 1958), was one of the first to propose a kind oflearning-based control setting called “Self-optimising Control System”. Indeed,he was already interested in building a “machine” that “adjusts itself automati-cally to control an arbitrary dynamics process”, paving the way to the learning-based or machine-learning control field. From his own words, “this machinerepresents a new concept in the development of control systems”. Once againBellman pioneered the adaptive control theory in the 1960s with other greatresearchers, an extended bibliography of Adaptive Control early days can befound in Åström and Wittenmark 1989, p. 38 and subsequent.
3.3.1 Adapting Learning Theory to Control
Basically, Learning-based Control brings together the fields of Control Theorypresented in Chapters 2 and 3 and Learning theory presented in Section 3.2.Several categories of learning-based control can be distinguished depend-ing on the unknown target object to be learnt. Taking back the notation ofSection 3.2.1, the target object f̄ ∈ F can now represent any central object ofthe control problem that have been presented.
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Strong Realisability Assumption

To simplify the exposition, all the target objects such as the policy space or theoperator spaces are supposed to be contained in the hypothesis spaces thatare considered. This means that quantities such as the optimal policy π∗, theoptimal value function J∗ or the true dynamics f are in the hypothesis spaces
F . Hence, those objects are learnable.
Data distribution

In learning-based control, a random data point Z̄ may be a complete trajectorydefined in Chapter 2 such as Z̄ = Hk or Z̄ = H∞, an observed state Z̄ = Xk,control Z̄ = Uk at a given time k or any pair or combination of them with otherobserved quantities (observations, inter-decision times, etc.).Thus, the data distribution PZ̄ is often the distribution of the finite or infi-nite observed trajectory. For instance, in the discrete case the data distributionmay be PZ̄ = PHk
or PZ̄ = PH∞ , and a similar distribution is defined in thecontinuous case with the continuous time history.

Loss Function

A common natural choice for the loss function is given by ℓ̄(f̄ , Z̄) = ℓ̄(π,H∞)
=
∑K

i=k γ
ic (Xk, Uk) where the distribution of H∞ depends, of course, on thepolicy π, time, and initial state distribution.

Dynamics Learning

In the case of dynamics learning, the target object is often the true dynamics,i.e. f̄ = f ∈ F . or the transition kernel f̄ = P ∈ F . Non-parametric estimators
of models are denoted with a hat, e.g. f̂ or P̂ and belong also to the hypothesisspace F .When the problem is parametric (F = Θ), the associated estimators aredenoted fθ∗ or Pθ∗ for θ∗ ∈ Θ the true parameter of the dynamics, and the
estimator of the weights is denoted θ̂.The methods using dynamics estimation are called model-based methodsbecause they use a “model” of the dynamics to make decisions.
Policy Learning

Regarding Policy Learning, the learning target can be the optimal policy, i.e.
f̄ = π∗. If the problem is nonparametric (π∗ ∈ F = Π), the correspondingestimator is denoted π̂. Similarly, in the parametric case, the optimal policy πθ∗is associated with the true parameter θ∗ ∈ Θ and the estimator of the weights
is denoted θ̂.
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Value Learning

Value Learning aims at approximating the objective (a.k.a. value) function (k, x,
π) 7→ J(k, x, π). As above, the non-parametric estimator of the value function
is denoted Ĵ and the parametric estimator is denoted Jθ for θ ∈ Θ.
3.3.2 Reinforcement Learning
Reinforcement Learning is a very large field that has been developed in thelast decades. The reader is referred to the comprehensive book of Sutton andBarto 2018 for a detailed introduction to the field.
Definition

Throughout this thesis, Reinforcement Learning is defined as the process oflearning an optimal policy π∗ ∈ AΠ from a decision performance feedbacktermed reinforcement signal. In the present context, the reinforcement signaltransmitted to the decisionmaker (controller) in a state x ∈ X , when a decision
u ∈ U is taken, is given by the cost c(x, u).
Policy Iteration

A fundamental two-steps procedure called policy iteration is performed to learnthe optimal policy. Iteratively, the following two stages are performed in orderto obtain a new policy π′ ∈ AΠ that performs better than the previous policy
π ∈ AΠ.

• Policy Evaluation: The value function J( · , π) of the policy is approximated
by an estimator Ĵ( · , π).

• Policy Improvement: The policy is updated such that the new policy is bet-ter than the previous one in terms of the objective function i.e. the newpolicy π ∈ AΠ is such that Ĵ( · , π′) ≤ Ĵ( · , π)

In some simple cases such as when the state and control spaces are finite (tab-ular), the policy iteration algorithm is guaranteed to converge to the optimalpolicy. Those cases rather belong to the field of Dynamic Programming. Thus,they are not considered as proper RL settings.In many other cases, neither the evaluation nor the improvement steps areperformed exactly. The methods thus belong to the case of Dynamic Program-ming with Function Approximation. The policy evaluation is approximated bythe value function estimation, and the policy improvement is rarely possible ina closed form, notably in the case of continuous control problems. Hence, Re-inforcement Learning is defined as the application of the policy iteration proce-dure, based on reinforcement signals, with learning algorithms to approximatethe value function and the policy.
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Value-based Methods

Value-based methods are a class of Reinforcement Learning methods that aimat learning the value function or the Q-function of the (possibly optimal) policy.Several ways exist to learn the value function in a supervised learning fash-ion. The most common approaches are the Temporal Difference (TD) methods(Tsitsiklis and Van Roy 1997) and the Q-learning algorithm (Watkins and Dayan1992; Tsitsiklis 1994; Melo 2001). Those methods supervise the learning of the(Q-)value function by using a target computed from some type of Bellman equa-tion (Theorem 3.1.1).Alternatively, the learning label can be an empirical estimate of the valuefunction obtained from a Monte Carlo simulation (here an empirical distribu-tion of the controlled trajectory is derived). However, this approach is not al-ways feasible in practice due to the high variance of the Monte Carlo estimatorand the high computational cost of the simulation (curse of the trajectory sizedimensionality).
Actor-based Methods

In this class of methods, the principal idea is to learn the policy directly fromthe reinforcement signal. They are called actor-based because the policy issometimes called the actor in the Reinforcement Learning literature.A common approach is to use the policy gradient theorem to update thepolicy in the direction of the gradient of the objective function (R. J. Williams,Peng, and H. Li 1991; Sutton, McAllester, et al. 1999).Another example of actor-based class of methods is the gradient-free Pol-icy Search approach (Sigaud and Stulp 2019) where the reinforcement signal iscollected to evaluate the policy performance.
Actor-Critic Methods

Actor-critic approaches (Konda and Tsitsiklis 1999) combine the two previousclasses of methods. This kind of procedure reduces the variance and is appre-ciated for its computational congeniality, even though it introduces bias in theestimation (due to bootstrapping).A critic is a (Q-)value function estimator that is used to construct a boot-strapped target of the cumulative cost by means of the Bellman equation (The-orem 3.1.1). For instance, the critic Ĵ is used to construct estimator Ĵ ′ of the(Q-)value of some state Xk at iteration k ∈ N which reads Ĵ ′(Xk) = c(Xk, Uk) +

γĴ(Xk+1). In this case the estimator Ĵ ′ is called a bootstrap estimator sinceit is a function of an estimator. Moreover, the critic is called as such becauseit evaluates the policy performance starting from the next state (at iteration
k + 1). This way, the estimator critics the decision taken at the current state (atiteration k).
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Model-free vs. Model-based

One essential difference between the fields of Dynamic Programming and Rein-forcement Learning is the access to themodel of the dynamics f or equivalently,the transition kernel P . Thus, the initial works in Reinforcement Learning weremodel-free, i.e. the dynamics are unknown and algorithms are based on theestimation of the value function or the policy from the reinforcement signal.In the case of model-based Reinforcement Learning (Moerland et al. 2022),
the dynamics are approximated by an estimator f̂ or P̂ . Then, a wide rangeof methods can be used to solve the control problem. Chapter 7 is essentiallybased on the ideas of a model-based Reinforcement Learning article.
Off-policy vs. On-policy

As mentioned for instance in Section 3.3.1, learning is based on some data dis-tribution derived from the interaction of the agent with the environment (dy-namic system). Suppose that the actual control policy π ∈ AΠ is fixed. If thedata distribution used for learning is independent of the policy π, then the learn-ing algorithm is said to be off-policy. Otherwise, the learning algorithm is saidto be on-policy.Several empirical advantages and drawbacks are associated with each typeof learning. Off-policy learning is often more efficient in terms of sample com-plexity, but it may suffer from high variance and instability. On-policy learningis more stable but may require more samples to converge.
3.3.3 Learning-based Model Predictive Control
Model Predictive Control

As stated in the introduction of the thesis (see Section 1.3.2), Model PredictiveControl (MPC) (Grüne and Pannek 2011) is a control strategy that combines twomain ingredients: a model of the system state dynamics P̂ and an optimisationproblem.For each decision time k ∈ N, the MPC approach consists of solving a finite-horizon optimal control problem. Formally it defines the following policy
πMPC(x) = u∗

0 (3.29)
s.t. (u∗

0, . . . , u
∗
KMPC) = argmin

(u0, ..., uKMPC )∈UKMPC+1

E

KMPC∑
k=0

c
(
X̂k, uk

)
| X̂0 = x

 (3.30)

where KMPC ≤ K is the MPC planning horizon, x ∈ X is the current state and
(X̂k)k∈[0,KMPC] is the state trajectory when the state transition probability is givenby the model P̂ .

72



The policy obtained with MPC on P̂ is denoted by πMPC. The history processunder πMPC is denoted byHMPC = (HMPC
k )k∈N, it is an approximation of the opti-mal history process (H∗

k)k∈N and the random variableHMPC
K is an approximationof the optimal trajectory H∗

K . The objective function under πMPC is denoted by
JMPC.When the system is partially observed, the MPC policy is computed using afilter (see Definition 2.2.11 and Remark 2.2.17).Fewer works have been done on the MPC with partially observed systems,the article Copp and Hespanha 2017 and the review Findeisen et al. 2003 aregood references on this topic.
Model Learning

In Learning-basedModel Predictive Control, themodel of the system dynamicsis learnt from data. This means that the model P̂ is an estimator of the truedynamics P . Any approach from Section 3.2.3 can be used to learn the model.This approach opposes the physics-based model predictive control wherethe model is derived from the physics of the system.
Cross-Entropy Method

In this work, the MPC procedure is performed with the iCEM algorithm, an im-proved version of the Cross Entropy Method (CEM) (Rubinstein and Kroese 2004;Pinneri et al. 2021), a zeroth order optimisation algorithmbased onMonte Carloestimation.
Now concrete examples of dynamical systems are presented. They rangefrom standard models used in control and dynamical system theory to morecomplex models used in the Flow Control literature.

3.4 Example of Dynamical Systems as Discrete De-
cision Processes

3.4.1 On the Spatial Discretisation
The potentially infinite dimensional function spaces are discretised such that
X ≃ RdX , Y ≃ RdY and U ≃ RdU . Any function of some space is represented bya finite-dimensional vector in the corresponding space (the finite approxima-tion vector should represent a function by containing a rich enough collectionof its images). The simulation and numerical approximation is done accordingto the standard scheme presented in Section 2.4. Such discretisation is dis-cussed and applied in several Reinforcement Learning works (e.g. Pan et al.2018; Bucci et al. 2019; Tallec, Blier, and Ollivier 2019).
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All environments start from a neighbourhood of some reference state xe ∈
X which can be an equilibrium of the system.43 More precisely, the initialstate is drawn from a Gaussian distribution centred at the reference state, i.e.
PX0 ∼ N (xe, σ

2
eIdX ) where σe > 0 is the standard deviation of the distribution.Regarding theNavier-Stokes flows, the initial state is an arbitrary element of thestate space that belongs to the attractor of the system (the set of states thatthe system tends to reach after a long time, i.e. the ergodic system behaviour).

3.4.2 Lorenz 63’ System
In the study of deterministic chaos, one of themost prominent systems is givenby the Lorenz 63’ differential equations. Those equations model the unpre-dictable behaviour usually associated with the weather. Over the years, thissystem inspired several works from the control community (Vincent and Yu1991) and is given as follows for some positive βi, i = 1, 2, 3 and an additivecontrol input:

∂tx
1
t = β1(x

2
t − x1

t ) + u1
t

∂tx
2
t = x1

t (β2 − x3
t )− x2

t + u2
t

∂tx
3
t = x1

tx
2
t − β3x

3
t + u3

t

(3.31)

In particular, when β1 = 10, β2 = 28 and β3 = 8
3
it has chaotic solutions andthree unstable equilibria xe∗i

for i = 1, 2, 3, which are considered as a referencestate xe for the resulting MDP.Note there is no spatial dimension in this system, thus the state space isfinite-dimensional with X = RdX , dX = 3 and U = RdU , dU = 3. The observableoperator g chosen in this work is the identity, g = Id thus Y = X and thediscrete operator is implicitly obtained during Runge-Kutta 4 integration. Inthe experiments, the initial reference state is set to xe = xe∗1
. Illustrations of theLorenz system used in this work are given in Figure 3.1.

3.4.3 Kuramoto-Sivashinsky
The second dynamical system in question is the Kuramoto-Sivashinsky (KS) equa-tion. It is a well-known unidimensional partial differential equation which ex-hibits spatio-temporally chaotic behaviour and describes many physical set-tings such as stability of flame fronts or reaction-diffusion systems (Cvitanović,Davidchack, and Siminos 2010). In this work, the KS equation is given for any
z ∈ Z by

∂txt(z) = −xt(z)∂zxt(z)− ∂2
zxt(z)− ∂4

zxt(z) + AKS(ut)(z) (3.32)
43An equilibrium is a state where the system remains if no external forces are applied. Inthe ODE case, it is a state xe ∈ X such that F (xe) = 0 for any t ∈ I , where F is the systemdynamics. In other words, the velocity of the system is null at the equilibrium, hence the stateremains constant and does not depend on time.
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Figure 3.1: Trajectory of the Lorenz system ((3.31)) in this work without control (left)and with random actuation (right). The system represented here is the one used inthis work, and the trajectory horizon is ten times greater than the one used in theexperiments. Note the initial stateX0 ∼ N (xe∗1 , σ
2
eId) is randomly picked in the vicinityof the equilibrium xe∗1 which is at the centre of the left butterfly wing.

where the spatial domain is given by Z = [0, LX ] with periodic boundary condi-tions (xt(z + LX ) = xt(z) for any z ∈ Z and t ∈ I), AKS is an actuation operatorthat models actuator interactions with the system.The observation mapping g : X → Y = RdY models the dY spatially equidis-tant sensors and is given, for any 1 ≤ i ≤ d and any t ∈ [0, T ], by
gi(xt) = ⟨xt, gµ̃i,s⟩L2 (3.33)

where gµ̃i,s is a Gaussian density with mean µ̃i ∈ [0, LX ] and standard deviation
s. Thus, (µ̃i)1≤i≤d and (si)1≤i≤dY represent respectively the barycenter and scaleof the sensors. Similarly, the actuation mapping AKS : U = RdU → X is given,for any 1 ≤ i ≤ dU and any t ∈ [0, T ], by

AKS(u)(z) =
dU∑
j=1

ujhµ̄j ,s̄(z) (3.34)
for any z ∈ Z , u ∈ U where hµ̄i,s is a Gaussian function with mean µ̄i ∈ [0, LX ]and standard deviation s̄.Here, the control u = (uj)1≤j≤dU is vector valued and each coordinate repre-sents the intensity of the actuation at a given location µ̄j . The role of AKS is tomap those intensities to the system state space X .This construction is inspired by Bucci et al. 2019 and in the same fashion, thespatial domain space is chosen withLX = 22. In this setting, the dynamics have4 unstable equilibria xe∗i

(z) for i = 0, 1, 2, 3 (spatially dependent on Z = [0, LX ]and time independent functions) which are considered as reference state xefor the resulting PO-MDP. Especially, xe∗0
(z) = 0 is the constant, null functionon the spatial domain.
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Figure 3.2: Trajectory of the Kuramoto-Sivashinsky system from (3.32) without control(left) and with random actuation (right). The system represented here is the one usedin this work, and the trajectory horizon is ten times greater than the one used in theexperiments. Note the initial stateX0 ∼ N (xe∗2 , σ
2
eId) is randomly picked in the vicinityof the equilibrium xe∗2(z)

Indeed, in this setting the system shares some interesting properties found inthe Navier-Stokes equations, which is a more realistic and practical but compu-tationally expensive model of fluid dynamics (Viquerat et al. 2022).Finally, all Banach spaces X , Y and U are discretised, with dX = 64, dY = 8and dU = 8where the sensors and actuators are equidistantly distributed in thespatial domain. In the experiments, the initial reference state is set to xe = xe∗2
.The equation being stiff, a particular method (Cox and Matthews 2002) is usedto proceed to the integration of the PDE. Notably, the periodic boundary condi-tions allow using the Fourier transform to compute the spatial derivatives. Theresulting dynamical system is illustrated in Figure 3.2.

3.4.4 Pendulum
A simple benchmark problem in control theory is the pendulum (Khalil 2002).The dynamics of the pendulum are described by the following ordinary differ-ential equation:

∂tx
1
t = x2

t

∂tx
2
t = −gP

lP sin(x1
t ) +

1

mPut

(3.35)
where x1

t is the angle of the pendulum with respect to the vertical axis, x2
t is theangular velocity of the pendulum, ut is the control input, gP is the accelerationdue to gravity, lP is the length of the pendulum, andmP is the mass of the pen-dulum. In the experiments, the parameters are set to the Gym default values

gP = 30.0, lP = 2.0 andmP = l2P
3
.

76



In general, the control objective is to stabilise the pendulum in the uprightposition. The control input is bounded with ut ∈ [−aP, aP] for some aP > 0 andany t ∈ I . The pendulum has two equilibria xe∗0
= (0, 0) and xe∗1

= (π, 0) whichis unstable. The initial reference state is set to xe = xe∗0
. The state space is

X = RdX , dX = 2 and the control space is U = RdU , dU = 1. The observableoperator g chosen is the identity, g = Id thus Y = X and the discrete operatoris implicitly obtained with Euler integration.The reader is referred to Towers et al. 2024 for a more detailed descriptionof the inverted pendulum problem and its practical implementation.
3.4.5 Van der Pol Oscillator
A classical equation of nonlinear dynamics is the Van der Pol oscillator (Khalil2002). This system was originally introduced by the Dutch physicist Van der Polto study oscillations in vacuum tube circuits. Then, it became a fundamentalexample in nonlinear oscillation theory (Atay 1998), hosting a large quantity ofinteresting dynamical behaviours.The equation is given by

∂tx
1
t = x2

t + u1
t

∂tx
2
t = ϵVDP(1− (x1

t )
2)x2

t − x1
t + u2

t

(3.36)
where x1

t is the position of the oscillator, x2
t is the velocity of the oscillator, ϵVDP >

0 is a parameter that controls the nonlinearity of the system.The only equilibriumof the system is the origin xe∗0
= (0, 0). Otherwise, all so-lutions are periodic, and the system exhibits limit cycle behaviour. The controlinput is bounded by ut ∈ [−aVDP, aVDP] for some aVDP > 0. In the experiments,the parameter is set to ϵVDP = 1.5, aVDP = 1.0.The state space is finite-dimensional with X = RdX , dX = 2 and U = RdU ,

dU = 2. The observation operator is the identity, g = Id thus Y = X and thediscrete-time operator is implicitly obtainedwith theDormand-Prince 5 integra-tionmethod (Hairer, Nørsett, andWanner 2008) from the torchdde library (Mon-sel et al. 2024).
3.4.6 Mackey-Glass
TheMackey-Glass equation is a representative instance of delay-induced chaos.Originally, it was introduced in M. C. Mackey and Leon Glass 1977 to model thedynamics of circulating blood cells in the human body. The equation is a nonlin-ear ordinary differential equation that describes the evolution of a monitoredvariable. The value of a state variable is sensed, and appropriate changes aremade in the production (or decay) rates of blood cell concentration. A delayedstate term models the time lag between sensing and response. The delayed
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differential dynamics read
∂txt = βMG xt−τX

1 + xnMG
t−τX

− γMGxt + ut (3.37)
where βMG, γMG, andnMG are positive parameters. The time delay τX is a positiveconstant such that t − τX ∈ I = [t0, T ] for any t ∈ I . The control input u is abounded function of time and is absent in the original formulation.In the dynamical system literature, this kind of equation is said to belongto the class of feedback (delay) systems as the delayed state is fed back intothe dynamics. Given the parameter values, the system exhibits multiple attrac-tors such as fixed points, periodic orbit, and chaotic attractors (Kiss and Röst2017). Because of the practical difficulties induced by the stiffness of the equa-tion when choosing a chaotic parameter regime, a configuration exhibiting aperiodic orbit is chosen. More precisely, the parameters are set to βMG = 2.0,
γMG = 1.0, nMG = 8.0. This dynamics possesses two equilibria xe∗0

= 0 and
xe∗1

> 0. The time delay is set to τX = 1.0. Even though the complexity of thesystem does not reach the chaotic regime, the essential property of interest isthe delayed feedback.Note there is no spatial dimension in this system, thus the state space isfinite-dimensional with X = RdX , dX = 1 and U = [−aMG, aMG], for some aMG >
0. Then, dU = 1. The observable operator g chosen is the identity, g = Id thus
Y = X and the discrete operator is implicitly obtained with the Runge-Kutta 4DDE solver from the torchdde library (Monsel et al. 2024). In the experiments,the initial reference state is set to xe = xe∗1

.For a thorough description and historical notes on the reasoning behind theconstruction of the Mackey-Glass equation, the reader is referred to L. Glassand M. Mackey 2010.
3.4.7 Navier-Stokes 2-Dimensional Flow
In the following example, a particular case of the Navier-Stokes equations in-troduced earlier in Example 2.13 for numerical simulations is presented.
Example 3.4.1 (Adimensional Navier-Stokes). Some fundamental system in fluiddynamics is governed by the Navier-Stokes equation. Let the velocity field be de-noted as (xt(z1, z2))t∈R+ and the pressure field as (pt(z1, z2))t∈R+ for any (z1, z2) ∈
ZNS ⊂ R2 where ZNS is the spatial domain. The adimensionalised Navier-Stokesequation reads:

∂xt
∂t

+ ⟨xt,∇⟩xt = −∇pt +
1

Re
∆xt, (3.38)

for any t ∈ I , where the same notation as in Example 2.13 is used.The velocity field x = (x1, x2) is adimensionalised with respect to a characteristicvelocity U∞, while the spatial coordinates (z1, z2) ∈ ZNS are scaled with a character-istic length LNS that generally depends on the spatial domain (e.g. physical object
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length). The Reynolds number Re is defined as:
Re =

U∞LNS
νNS ,

where νNS is the kinematic viscosity. This number is a parameter that controls the“complexity” of the flow and helps to predict fluid flow patterns. At low Reynoldsnumbers, flows tend to be dominated by laminar (constant streamlines) flow, whileat high Reynolds numbers, flows tend to be turbulent.The flow incompressibility hypothesis is made to simplify the problem. This hy-pothesis is expressed by the divergence-free condition:
div(xt) = 0 (3.39)

for any t ∈ I , where div is the divergence operator (Chorin and Marsden 2013).For this form of the equation, boundary conditions also play a crucial role sincethey notably define the geometry of the problem. Importantly, all control inputsfor the next examples are embedded in the boundary conditions. For instance, ablowing or suction strategy at a specific location in the spatial domain can be mod-elled by some specific boundary conditions. See Holmes et al. 2012 for a generaldescription and the references attached to the particular flows below.
The flow control interface is managed by Hydrogym (Paehler et al. 2023)which is built on top of Firedrake (Ham et al. 2023), an automated system for thesolution of partial differential equations using the finite element method (FEM)(Allaire 2005) and the Unified Form Language (UFL) (Alnaes et al. 2013) from theFEniCS project (Baratta et al. 2023). The flow is integrated in time with the semi-implicit backward differentiation formula (Semi-implicit BDF)method (Forti andDedè 2015). Thus, the exact implementation of the flows is available at the fol-lowing address: https://github.com/dynamicslab/hydrogym/tree/main.In the case of Navier-Stokes flows, any system state x ∈ X is a vector field.Then, the state space X is the space of vector fields on the corresponding spa-tial domainZNS. Those large state spaces (infinite dimensional) are numericallydiscretisedwith a finite element approach. Moreover, measurements are takenat discrete locations in the spatial domain, leading to a finite-dimensional ob-servation space Y = RdY with dY ∈ N∗.Now the three Navier-Stokes benchmark problems are presented in the fol-lowing paragraphs.

Cylinder Flow

The cylinder flow is a classical benchmark problem in fluid dynamics. It consistsof a two-dimensional flow around a circular cylinder in a uniform stream. Thecharacteristic length LNS is the diameter of the cylinder here.Above a critical Reynolds Re ≈ 50, the uncontrolled flow is linearly unstableand eventually reaches a post-transient state of periodic vortex shedding, the
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https://github.com/dynamicslab/hydrogym/tree/main


Figure 3.3: Illustration of the cylinder flow problem. Shown here is the velocity (vector)field of the flow around a circular cylinder at Reynolds Re = 100.

well-known von Kármán vortex street. From a flow control perspective, thisis a benchmark problem in stabilisation and drag reduction. Generally, theobjective is to reduce the drag force (less commonly, the lift force) acting onthe cylinder. This setup incorporate sufficient challenges for control strategies,such as the nonlinearity of the flow and the actuation through partially observ-able measurements.Two measurements (dY = 2) are extracted from the flow: the lift and dragcoefficients acting on the cylinder. The flow actuation is performed by two jetsnormal to the cylinder wall relative to the flow direction. Mass flow rates repre-senting blowing or suction on the cylinder wall are injected, following Rabaultet al. 2019. Hence, dU = 1 since the actuation intensity of one jet is equal to theopposite of the other. The control space U is symmetrical and bounded by themaximum actuation intensity which is specified by the user.Complementary to theHydrogym interface, the reader can refer to Sipp andLebedev 2007 for a detailed description of the uncontrolled flow and Rabaultet al. 2019 for the associated control problem.
Fluidic Pinball

The pinball flow extends the cylinder flow by adding two additional cylinders inthe wake of the main cylinder. Originally, this flow was introduced for testingflow control laws with low computational cost, while being physically complexenough to host a range of interacting frequencies Deng et al. 2018. This is a rela-tively new benchmark for multiple inputs-multiple outputs nonlinear flow con-trol. This configuration exhibits a large range of flow behaviours, from steadystate to chaotic dynamics.Similarly to the cylinder flow, the pinball flow is characterised by the lift anddrag coefficients acting on the three cylinders. The characteristic length LNS
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Figure 3.4: Illustration of the fluidic pinball problem. Shown here is the velocity (vector)field of the flow around a pinball at Reynolds Re = 130.

is the diameter of any cylinder. However, the actuation is performed by rotat-ing the cylinders around their axis. Consequently, the control space U is thebounded space of rotations of the cylinders, and the control dimension dU = 3is the number of cylinders. The measurements are taken at the same locationsas the cylinder flow, leading to dY = 2× 3 = 6.Complementary to the Hydrogym interface, the reader can refer to Deng etal. 2018 for a detailed description of the uncontrolled flow and Cornejo Macedaet al. 2021 for the associated control problem. See Peitz, Otto, and Rowley 2020for a recent application of the Koopman operator theory to control the fluidicpinball.
Cavity Flow

Another particular flow which exhibits a rich variety of behaviours is the openCavity Flow. This is a benchmark of commonly called separated fluid flow.From Barbagallo, Schmid, and Huerre 2009: “This type of flow exhibits a re-circulating component (confined geometrically to the cavity) as well as a strongshear layer that forms at the top of the cavity and, for sufficiently high Reynoldsnumber, becomes unstable and settles into a characteristic periodic motion.”A blowing and suction strategy is applied to the cavity flow control prob-lem. The characteristic length LNS is the depth of the cavity here. The sensormeasurement is located at the top-right corner of the cavity. The actuation isperformed by a jet at the top-left corner (upstream edge) of the cavity. Con-
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Figure 3.5: Illustration of the cavity flow problem. Shown here is the velocity (vector)field of the flow around a square cavity at Reynolds Re = 7500.

cretely, the control input is the intensity of the jet, and the control space U isthe bounded space of the jet intensity. The control dimension dU = 1 is thenumber of actuators. The observation space Y is the set of wall-normal shearstress measurements evaluated on a neighbourhood of at the top-right cornerof the cavity (sensor location). Shear stress is critical in understanding dragforces on surfaces.Complementary to the Hydrogym interface, the exact configuration with ge-ometric and numerical details is fully described in Sipp and Lebedev 2007 andthe control setup is described in Barbagallo, Schmid, and Huerre 2009.

3.5 Conclusion
This chapter introduced the discrete-time version of the controlled process andits associated optimality problem, which is widely used in the Learning-BasedControl literature.First of all, the general discrete time decision process was defined (Section3.1) together with the discrete-time version of Dynamic Programming (Section3.1.4). The Learning Theory (Section 3.2) was then introduced in a sufficient gen-erality to encompass the range of problems encountered in this thesis. Then,Learning-based Control was introduced (Section 3.3) as the application of esti-mation and learning techniques to the optimal control problem.Multiple important concepts and paradigms that are used throughout thethesis were presented, such as the policy iteration procedure or Model Predic-tive Control.Finally, the chapter concluded with a presentation of the several controlled
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dynamics that are of interest in the field of control of Dynamical Systems (Sec-tion 3.4).
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II Methodological Advances in
Learning Based Control
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4 Evidence on the Regularisation
Properties of Maximum Entropy
Reinforcement Learning

This chapter is an attempt to address the robustness challenge discussed in theintroduction of the thesis (Section 1.4.1). Here, robustness to white noise is con-sidered in the context of Reinforcement Learning and some empirical evidenceis provided to support the hypothesis that Maximum Entropy ReinforcementLearning policies are more robust than their non-regularised counterparts.This work led to the publication of a paper on the proceedings of the 7thInternational Conference in Optimization and Learning (OLA24) in Dubrovnik(Hosseinkhan Boucher, Semeraro, and Mathelin 2025).

4.1 Introduction
Maximum Entropy Reinforcement Learning (R. J. Williams, Peng, and H. Li 1991)aims to solve the problem of learning a policy which optimises a chosen utilitycriterion while promoting the entropy of the policy. The standard way to ac-count for the constraint is to add a Lagrangian term to the objective function.This entropy-augmented objective is commonly referred to as the soft objec-tive.There are multiple advantages in solving the soft objective over the stan-dard objective. For instance, favouring stochastic policies over deterministicones allows learning multi-modal distributions (Haarnoja, Tang, et al. 2017). Inaddition, agent stochasticity is a suitable way to deal with uncertainty inducedby PartiallyObservableMarkovDecision Processes (PO-MDP). Indeed, there arePO-MDP such that the best stochastic adapted policy can be arbitrarily betterthan the best deterministic adapted44 policy (Sigaud and Buffet 2010).Furthermore, several important works highlight both the theoretical and exper-

44In this context, the term “stochastic adapted policy” is a conditional distribution on the con-trol spaceU given the observation spaceY since this type of policy is “adapted” fromMarkovianpolicies in fully observable MDPs.
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imental robustness of those policies under noisy dynamics and rewards (Eysen-bach and Levine 2022).Related to the latter notion of robustness, the maximum-entropy principleexhibits non-trivial generalisation capabilities, which are desired in real-worldapplications (Haarnoja, A. Zhou, Abbeel, et al. 2018).However, the reasons for such robustness properties are not yet well un-derstood. Thus, further investigations are needed to grasp the potential ofthe approach and to design endowed algorithms. A clear connection betweenMaximum-Entropy RL and their robustness properties is important and intrigu-ing.Meanwhile, recent work in the deep learning community discusses howsome complexity measures on the neural network model are related to gener-alisation and explains typically observed phenomena (Neyshabur, Bhojanapalli,et al. 2017). In fact, these complexity measures are derived from the learnt mo-del, they bound the PAC-Bayes generalisation error, and are meant to identifywhich of the local minima generalise well.As a matter of fact, a relatively recent trend in statistical learning suggeststhat generalisation is not only favoured by the regularisation techniques (e.g.dropout) butmainly because of the flatness of the localminima (Hochreiter andSchmidhuber 1997; Dinh et al. 2017; Keskar et al. 2017). The reasons for suchregularity properties remain an open problem. Thiswork aims to address thesepoints in the context of Reinforcement Learning, and addresses the followingquestions:What is the bias introduced by entropy regularisation? Are the aforementionedcomplexity measures also related to the robustness of the learnt solutions in thecontext of Reinforcement Learning?In that respect, by defining a notion of robustness against noisy contami-nation of the observable, a study on the impact of the entropy regularisationon the robustness of the learnt policies is first conducted. After explaining therationale behind the choice of the complexity measures, a numerical study isperformed to validate the hypothesis that some measures of complexity aregood robustness predictors. Finally, a link between the entropy regularisationand the flatness of the local minima is treated through the information geom-etry notion of Fisher Information.The chapter is organised as follows. Section 4.2 introduces the backgroundand related work, Section 4.3 presents the problem setting. Section 4.4 is thecore contribution of this chapter. This section introduces the rationale behindthe studied complexity measures from a learning theory perspective, as wellas their expected relation to robustness. Lastly, Section 4.5 presents the ex-periments related to the policy robustness as well as their complexity, whileSection 4.6 examines the results obtained. Finally, Section 4.8 concludes thechapter.
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4.2 Related work
Maximum Entropy Policy Optimisation In Haarnoja, A. Zhou, Abbeel, etal. 2018, the generalisation capabilities of entropy-based policies are observedwhere multimodal policies lead to optimal solutions. It is suggested that maxi-mumentropy solutions aim to learn all the possible ways to solve a task. Hence,transfer learning towards more challenging objectives is made easier, as it isdemonstrated in their experiment. This study investigates the impact of adopt-ing policies with greater randomness on their robustness. The impact of theentropy regularisation on the loss landscape has been recently studied in (Z.Ahmed et al. 2019). They provide experimental evidence about the smooth-ing effect of entropy on the optimisation landscape. The present study aimsspecifically to answer the question in Section 3.2.4 of their paper: Why do highentropy policies learn better final solutions? This work extends their results froma complexity measure point of view. Recently, (Neu, Jonsson, and Gómez 2017;Derman, Geist, andMannor 2021) studied the equivalence between robustnessand entropy regularisation on regularised MDP.
Flat minima and Regularity The notion of local minima flatness was first in-troduced in the context of supervised learning by Hochreiter and Schmidhuber1997 through the Gibbs formalism (Haussler and Opper 1997). Progressively,different authors stated the concept with geometric tools such as first order(gradient) or second order (Hessian) regularity measures (Zhao, Zhang, and Hu2022; Keskar et al. 2017; Sagun, Bottou, and LeCun 2017; Yoshida and Miyato2017; Dinh et al. 2017). In a similar fashion, Chaudhari et al. 2019 uses the con-cept of local entropy to smooth the objective function.In the scope of Reinforcement Learning, Z. Ahmed et al. 2019 observed that flatminima characterise maximum entropy solutions, and entropy regularisationhas a smoothing effect on the loss landscape, reducing the number of localoptima. A central objective of this present study is to investigate this latterproperty further and relate it to the field of research on robust optimisation.Lastly, among the few recent studies on the learning and optimisation aspectsof RL, Gogianu et al. 2021 shows how a well-chosen regularisation can be veryeffective for deep RL. Indeed, they explain that constraining the Lipschitz con-stant of only one neural network layer is enough to compete with state-of-the-art performances on a standard benchmark.
Robust Reinforcement Learning A branch of research related to this work isthe study of robustnesswith respect to the uncertainty of the dynamics, namelyRobust Reinforcement Learning (Robust RL), which dates back to the 1970’s (Satiaand Lave 1973). Correspondingly, in the field of control theory, echoes the no-tion of robust control and especiallyH∞ control (K. Zhou, J.C. Doyle, and Glover1996), which also appeared in the mid-1970s after observing Linear Quadratic
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Regulator (LQR) solutions are very sensitive to perturbations while not givingconsistent enough guarantees (J. Doyle 1996).More specifically, the Robust RL paradigm aims to control the dynamics in theworst-case scenario, i.e. to optimise the minimal performance for a given ob-jective function over a set of possible dynamics through a min-max problemformulation. This set is often called ambiguity set in the literature. It is definedas a region in the space of dynamics close enough w.r.t. to some divergencemeasure, such as the relative entropy (Nilim and Ghaoui 2003). Closer to thiswork, the recent paper from Eysenbach and Levine 2022 shows theoreticallyhow Maximum-Entropy RL policies are inherently robust to a certain class ofdynamics of fully observed MDP. The finding of their article might still hold inthe partially observable setting as any PO-MDP can be cast as fully observedMDP with a larger state-space of probability measures (Onésimo Hernández-Lerma and Lasserre 1996), provided the ambiguity set is adapted to a morecomplicated space.

4.3 Problem Setup and Background

4.3.1 Partially Observable Markov Decision Process with
Gaussian noise

First, the stochastic control problem when noisy observations are available tothe agent is formulated. The study focuses on Partially Observable Markov Deci-sion Processes (PO-MDP) with Gaussian noise of the form (M. P. Deisenroth andPeters 2012):
Xk+1 = F (Xk, Uk)

Yk = G (Xk) + ϵY , ϵY ∼ N (0, σ2
Y Id)

(4.1)
with Xk ∈ X , Uk ∈ U and Yk ∈ Y for any k ∈ N, where X , U and Y are respec-tively the corresponding state, action, and observation spaces. The initial statestarts from a reference state x∗

e on which centred Gaussian noise with diagonalcovariance σ2
eId is additively applied,X0 ∼ N (x∗

e, σ
2
eId). Associated with the dy-namics, an instantaneous cost function c : X × U → R+ is also given to definethe control model.In the context of this chapter, a policy π is a transition kernel on U given Y ,i.e. a distribution on actions conditioned on observations. This kind of policyis commonly used in literature but can be very poor in the partially observablesetting where information is missing. Together, a control model, a policy π, andan initial distribution PX0 on X define a stochastic process with distribution

Pπ,ϵY (Proposition 2.3.1) where the superscript ϵY highlights the dependency onthe observation noise ϵY . Similarly, one denotes by Pπ the distribution of theprocess when the noise is zero almost-surely, i.e. Pπ = Pπ,0. More details aboutthe PO-MDP control problem can be found in Onésimo Hernández-Lerma and
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Lasserre 1996; Cassandra 1998.Here, the maximum-entropy control problem is to find a policy π∗ whichminimises the following performance criterion
Jπ,ϵY
m = Eπ,ϵY

[
K∑
k=0

γkc (Xk, Uk)

]
− αH

mEπ,ϵY

[
K∑
k=0

γkH(π( · | Xk))

]
, (4.2)

where K ∈ N is a given time horizon, Eπ,ϵY denotes the expectation underthe probability measure Pπ,ϵY , H denotes the differential entropy (Cover andThomas 2006) and αH
M is a time-dependent weighting parameter that evolvesover training timem ≤ mD = |D| with |D| being the total number of times theagent interacts with the system such that all observations used by the learningalgorithm form the dataset D at the end of the training procedure (when mDenvironment interactions are done).In the αH

m = 0 case, Jπ,ϵY
m is denoted Jπ,ϵY . Here, the quantity Jπ,ϵY is called thevalue function or, more generally, loss (see also Section 3.1.4).45Moreover, the performance gap for dynamics with noisy and noiseless observ-ables will be considered in the sequel. In this context, the (rate of) excess riskunder noise is defined as the difference between the loss under noisy dynamicsand the loss under noiseless dynamics:

Definition 4.3.1 (Excess Risk Under Noise). The excess risk under noise of a policy
π for a PO-MDP with dynamics given by Eq. (4.1) is defined as:

Rπ = Eπ,ϵY

[
K∑
k=0

γkc (Xk, Uk)

]
− Eπ

[
K∑
k=0

γkc (Xk, Uk)

]
= Jπ,ϵY − Jπ (4.3)

Similarly, the rate of excess risk under noise is defined as:
R̊π =

Jπ,ϵY − Jπ

Jπ
=

Rπ

Jπ
(4.4)

Note that in the above definition, expectations are taken with respect tothe probability measure Pπ,ϵY and Pπ respectively. The rate of excess risk un-der noise represents the performance degradation after noise introduction invalue function units. In the sequel, arguments to heuristically derive complex-ity measures will be developed, allowing to predict the excess risk under noiseand provide numerical evidence showing maximum-entropy policies are morerobust regarding this metric. Hence, maximum-entropy policies implicitly learna robust control policy in the sense of Definition 4.3.1.In the next section, some concepts of statistical learning theory are intro-duced. Then, complexity measures will be defined to quantify the regularisa-tion power of the maximum-entropy objective of Eq. (4.2).
45This notation is more convenient than the one used in Chapter 3 when the context is clear.
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4.4 Complexity Measures and Robustness

4.4.1 Complexity Measures
The principal objective of statistical learning is to provide bounds on the gener-alisation error, so-called generalisation bounds. In the following, it is assumedthat an algorithm A returns a hypothesis π ∈ F from a dataset D. Note thatthe dataset D is random and the algorithm A is a randomised algorithm.As the hypothesis set F typically used in machine learning is infinite, a prac-tical way to quantify the generalisation ability of such a set must be found. Thisquantification is done by introducing complexity measures, enabling the deriva-tion of generalisation bounds.
Definition 4.4.1 (Complexity measure). A complexity measure is a mappingM :
F → R+ that maps a hypothesis to a positive real number.

According to Neyshabur, Bhojanapalli, et al. 2017 fromwhich this formalismis inspired, an appropriate complexity measure satisfies several properties. Inthe case of parametric models πθ ∈ F(Θ) with θ ∈ Θ ⊂ Rb, it should increasewith the dimension b of the parameter space Θ as well as being able to identifywhen the dataset D contains totally random, spurious or adversarial data. Asa result, finding good complexity measuresM allows the quantification of thegeneralisation ability of a hypothesis set F or a model π and an algorithm A.
4.4.2 Complexitymeasures for PO-MDPwith GaussianNoise
This work studies heuristics about generalisation bounds on the optimal excessrisk under noise from Definition 4.3.1when the optimal policy πθ∗ is learnt withan algorithm A on the non-noisy objective Jπ, where αH

m = 0 for anym.
Definition 4.4.2 ((Rate of) Excess Risk Under Noise Bound). Given an optimalpolicy π∗ learnt with an algorithm A on the non-noisy objective Jπ, the optimalexcess risk under noise bound is a real-valued mapping φ such that

Rπ∗ ≤ φ(M(π∗,D), mD, η, δ) (4.5)
and φ is increasing with the complexity measureM and the sample complexitymD.The definition is similar to the rate of excess risk under noise bound where R̊π∗ isused instead ofRπ∗ .

Hence, by considering a learning algorithm A with a parameterised familygiven by F(Θ) = (πθ)θ∈Θ, Θ ⊂ Rb, such that θ = (θµ, θσπ) with a Gaussian policy
πθ(· | x) ∼ N (µθµ(x), diag(θσπ)), x ∈ X , - where µθµ is a shallow multi-layerfeed-forward neural network (with depth-size l = 2, width w = 64 neurons,weights matrix (θiµ)1≤i≤l) and diag(θσπ) is a diagonal matrix of dimension dU =
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dim(U)parameterising the variance46—to learn the optimal policy πθ∗ , multiplecomplexity measuresM are defined and details on their underlying rationaleare given below.
Norm based complexity measures

First, the so-called norm-based complexitymeasures are functions of the normof some subset of the parameters of themodel. For instance, a common norm-basedmeasure calculates the product of the operator norms of the neural net-work linear layers. The measures are commonly used in the statistical learningtheory literature to derive bounds on the generalisation gap, especially in thecontext of neural networks (Neyshabur, Tomioka, and Srebro 2015; Golowich,Rakhlin, and Shamir 2018; Miyato et al. 2018).In fact, the product of the linear layers norm of a standard class of multi-layerneural networks (including Convolutional Neural Networks) serves as an upperbound on the often intractable Lipschitz constant of the network (Miyato et al.2018). Thus, controlling the linear layers weights magnitude increases the reg-ularity of the model.Consequently, the following complexity measures are defined:
• M(πθ,D) = ∥θµ∥p

• M(πθ,D) = Πl
i=1∥θiµ∥p where θiµ is the ith layer of the network µθµ

In this context ∥ · ∥p with p = 1, 2, ∞ denotes the p-operator norm while p = Fdenotes the Frobenius norm, which is discarded for the first case of the fullparameters vector θµ (since Frobenius norm is defined for matrix).
Flatness based complexity measures

On the other hand, another measure of complexity is given by the flatnessof the optimisation local minimum (see Section 4.2 for a brief overview). AsMcAllester 2003; Neyshabur, Bhojanapalli, et al. 2017 have pointed out, the gen-eralisation ability of a parametric solution is controlled by two key componentsin the context of supervised learning: the norm of the parameter vector and itsflatness w.r.t. to the objective function.One might wonder if a similar robustness property still holds in the settingof Reinforcement Learning. In this manner, complexity measures quantifyingthe flatness of the solution are needed. Concretely, the interest lies in the flat-ness of the local minima of the objective function Jπ. As stated earlier, thereare several ways to quantify the flatness of a solutionwithmetrics derived fromthe gradient or curvature of the loss function at the local optimum, such as the
46Note this choice of state-independent policy variance is inspired by Z. Ahmed et al. 2019and simplifies the problem.
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Hessian’s largest eigenvalue—otherwise spectral norm (Keskar et al. 2017) orthe trace of Hessian (Dinh et al. 2017).Moreover, as discussed in Section 4.2, Z. Ahmed et al. 2019 observed thatmaximum entropy solutions are characterised by flat minima while entropy reg-ularisation has a smoothing effect on the loss landscape. Hence, a central ob-jective of this present study is to investigate this latter property further and relate itto the robustness aspect of the resulting policies. However, instead of dealing di-rectly with the Hessian of the objective Jπ this work proposes ameasure basedon the conditional Fisher Information I of the policy due to its link with a notionof model regularity in the parameter space.
Definition 4.4.3 (Conditional Fisher Information Matrix). Let x ∈ X and πθ apolicy identified by its conditional density for a parameter θ ∈ Θ ⊂ Rb and suppose
ρ is a distribution over X . The conditional Fisher Information Matrix of the vector θis defined under some regularity conditions as

I(θ) = − EX∼ρ,U∼πθ(·|X)
[
∇2

θ log πθ(U | X)
]
, (4.6)

where∇2
θ denotes the Hessian matrix evaluated at θ.

Note that the distribution over states ρ is arbitrary and can be chosen as thediscounted state visitationmeasure ρπ inducedby the policyπ (A. Agarwal, Jiang,and Kakade 2019) or the stationary distribution of the induced Markov processif the policy is Markovian and the MDP ergodic47 as it is done in Kakade 2001.As a matter of fact, it has already been mentioned in the early works ofpolicy optimisation (Kakade 2001) that this quantity I might be related to theHessian of the objective function. Indeed, the Hessian matrix of the standardobjective function reads (see Shen et al. 2019 for a proof):
∇2

θJ
πθ = Eπθ

[
K∑

k,i,j=0

c (Xk, Uk)
(
Πi,j

1 +Πi
2

)]
. (4.7)

where the second order quantities (matrix valued) are given by
Πi,j

1 := ∇θ log πθ (Ui | Xi)∇θ log πθ (Uj | Xj)
T (4.8)

Πi
2 := ∇2

θ [log πθ (Ui | Xi)] (4.9)
As suggested by the author mentioned above (S. Kakade), Eq. (4.7) might berelated to I although being weighted by the cost c. Indeed, the Hessian of thestate-conditional log-likelihoods (∇2

θ log πθ on the rightmost part of the expec-tation of Eq. (4.7)) belongs to the objective-function Hessian ∇2
θJ

πθ while theFisher Information I(θ) is an average of the Hessian of the policy log-likelihood.
47With these choices, the following holds: Eρπ(dx)π(du|x) = Eπ up to taking the expectationw.r.t. the state-control space (no subscript under X and U ) or the trajectory space (with sub-scripts such asXk and Uk as trajectory coordinate) (A. Agarwal, Jiang, and Kakade 2019).
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In any case, the conditional FIM measures the regularity of a critical compo-nent of the objective to be minimised. Thus, the trace of the conditional FIM ofthe mean actor network parameter θµ is suggested as a complexity measure
• M(πθ,D) = Tr(I (θµ)) = Tr(− EX∼ρπ ,U∼πθ(·|X)

[
∇2

θµ
log πθ(U | X)

]
).

Moreover, in the context of classification, a link between the degree of stochas-ticity of optimisation gradients (leading to flatterminima (MulayoffandMichaeli2020; Xie, Sato, and Sugiyama 2021)) and the FIM trace during training has re-cently been revealed in Jastrzebski et al. 2021. Magnitudes of the FIM eigen-values may be related to loss flatness and norm-based capacity measures togeneralisation ability (Karakida, Akaho, and Amari 2019) in deep learning.

4.5 Experiments

4.5.1 Robustness under noise of Maximum Entropy Policies
The first hypothesis is that maximum entropy policies aremore robust to noisethan those trained without entropy regularisation (which plays the role of con-trol experiments). Consequently, the robustness of the controlled policy πθ∗ iscomparedwith the robustness of themaximumentropy policy παH

θ∗ for differenttemperature evolutions αH = (αH
m)0≤m≤mD .In this view, and since inter-algorithm comparisons are characterised byhigh uncertainty (Henderson et al. 2018; Colas, Sigaud, and Oudeyer 2018; R.Agarwal et al. 2021), only one algorithm A (Proximal Policy Optimisation (PPO)(Schulman, Wolski, et al. 2017)) is retained while results on multiple entropyconstraint levels αH = (αH

m)0≤m≤mD are examined.In this regard, ten independent PPO models are trained for each of thefive arbitrarily chosen entropy temperatures αHi = (αHi
m)0≤m≤mD where i ∈

{1, . . . , 5}, on dynamics without observation noise, i.e. where σ2
Y = 0. The en-tropy coefficients linearly decay during training, and all vanish (αH
m = 0) whenmreaches one-fourth of the training timem1/4 = ⌊mD

4
⌋ in order to replicate a sortof exploration-exploitation procedure, ensuring that all objectives Jπ

m are thesamewheneverm ≥ m1/4, i.e. Jπ
m = Jπ. This choice is different but inspired by Z.Ahmed et al. 2019 as they optimise using only the policy gradient andmanipulatethe standard deviation of Gaussian policies directly, whereas, in the present ap-proach, it is done implicitly with an adaptive entropy coefficient. An algorithmthat learns a model with a given entropy coefficient αH = (αH

m)0≤m≤mD is de-noted as AαH .The chosen chaotic systems are the Lorenz (Vincent and Yu 1991) (withmD =
106) and Kuramoto-Sivashinsky (KS) (Bucci et al. 2019) (withmD = 2·106) controlleddifferential equations. The default training hyperparameters from the libraryStable-Baselines3 (Raffin et al. 2021) are used.
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4.5.2 Robustness against Complexity Measures
So far, three separate analyses on the 5 × 10 models obtained have been per-formedon the Lorenz and Kuramoto-Sivashinsky (KS) controlled differential equa-tions.First, as mentioned before, the robustness of the models for each of the cho-sen entropy temperatures αHi is tested against the same dynamics but nowwith a noisy observable, i.e. σY > 0. Second, norm-based complexity measuresintroduced in Section 4.4.2 are evaluated and compared to the generalisationperformances of the distinct algorithms AαH . Third, numerical computation ofthe conditional distribution of the trace of the Fisher Information Matrix givenby Eq. (4.6) is performed to test the hypothesis that this regularity measure isan indicator of robust solutions. The state distribution ρπθ is naturally chosen asthe state visitation distribution induced by the policy πθ. The following sectiondiscusses the results of those experiments.

4.6 Results
This section provides numerical evidence of maximum entropy’s effect on therobustness, as defined by the Excess Risk Under Noise defined by Eq. (4.3).Then, after quantifying robustness, the relation between the complexity mea-sures defined in Section 4.4.2 and robustness is studied.
4.6.1 Entropy Regularisation induces noise robustness
In the first place, a distributional representation48 of the rate of excess risk un-der noise defined in Eq. (4.3) is computed for eachof the 5× 10models obtainedwith the PPO algorithm AαHi , i ∈ {1, . . . , 5} and different levels of observationnoise σY > 0.First and foremost, the results shown in Figure 4.1 indicate that the noiseintroduction to the system observable Y of KS and Lorenz leads to a globaldecrease in performance, as expected.The robustness to noise contamination of the two systems is improved byinitialising the policy optimisation procedure up to a certain intermediate en-tropy coefficient threshold αHi > 0. Once this value is reached, two respectivebehaviours are observed depending on the system. In the case of the Lorenzdynamics, the robustness continues to improve after this entropy threshold,

48By replacing the expectation operator E with the conditional expectation E[ · | X0] in thedefinition of Rπ in (4.3), the quantity becomes a random variable for which the distributioncan be estimated by sampling the initial state distribution X0 ∼ N (x∗
e, σ

2
eId). In fact, takingthe conditional expectation gives the difference of the standard value functions under Pπ and

Pπ,ϵY .
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whereas the opposite trend is observed for KS (particularly with the maximalentropy coefficient chosen).Hence, the sole introduction of entropy-regularisation in the objective func-tion impacts the robustness. This behaviour difference between Lorenz and KSmight be explained by the variability of the optimisation landscapes that can beobserved with respect to the chosen underlying dynamics as underlined in Z.Ahmed et al. 2019.

Figure 4.1: Distributional representation of the rate of excess risk under noise R̊π

conditioned on the αHi used during optimisation for different initial state distribution
X0 ∼ N (x∗e, σ

2
eId). Each of the rows corresponds to one of the dynamical systems ofinterest. Each of the columns corresponds to one of the initial state distributions ofinterest. There are two non-zero fixed points (equilibria) x∗e for Lorenz and three forKS. From top to bottom: KS; Lorenz.For each box plot, three intensities σY for the observation noise ϵY are evaluated. Asexpected, when the uncertainty regarding the observable Y increases through the vari-ance σY of the observation signal noise ϵY , the policy performance decreases globally(R̊π increases). Moreover, the rate of excess risk under noise tends to decrease when

αHi increases in the Lorenz case, whereas it decreases up to a certain entropy thresh-old for KS before increasing again.

97



4.6.2 Maximum entropy as a norm-based regularisation on
the policy

Norm-based complexity measures introduced in Section 4.4.2 are now evalu-ated. For a complexity measure M to be considered significant, it should becorrelated with the robustness of the model.Accordingly, the different norm-based measures presented in Section 4.4.2are estimated. Figure 4.2 shows the layer-wise product norm of the policy actornetwork parameters (M(πθ,D) = Πl
i=1∥θiµ∥p) w.r.t. to their associated entropycoefficient αHi for all the 50 independently trained models.Again, policies obtained with initial αHi > 0 exhibit a trend toward decreas-ing complexity measure values as αH increases up to a certain threshold of theentropy coefficient. Similarly to Section 4.6.1, the complexity measure contin-ues to decrease after surpassing this threshold for the Lorenz system. On theother hand, in the KS case,M(πθ,D) increases again once its entropy thresholdis reached, notably for the larger entropy coefficient.Moreover, themeasures tend to bemuchmore concentrated when αHi > 0,especially in the case of KS (except for the higher αHi).This may indicate that the entropy regularisation acts on the uncertainty ofthe policy parameters. Likewise, similar observations can bemade for the total

Figure 4.2: Measures of complexityM(πθ,D) = Πl
i=1∥θiµ∥p with p = 1, 2, ∞, F condi-

tioned on the αHi used during optimisation. Each row corresponds to one of the dy-namical systems of interest while columns represent a different norm order p. Fromtop to bottom: Lorenz and KS.For the Lorenz case, the barycenters of the measures tend to decrease when αHi in-creases. Regarding KS, passing a threshold, the complexity increases with the entropyagain. In addition, the measures are much more concentrated when αHi > 0. For
p = 2, F , the separation of the measures w.r.t. the different αHi is more pronounced.
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norm of the parameters but are not introduced here for the sake of brevity.Consequently, this experiment highlights an existing correlation betweenmaximum entropy regularisation and norm-based complexity measures. Asthis complexity measure is linked to the Lipschitz continuity of the policy, onemight wonder if the regularity of the policy is more directly impacted. This isthe purpose of the next section.
4.6.3 Maximum entropy reduces the

average Fisher-Information
Another regularity measure is considered: the average trace of the Fisher infor-
mation (M(πθ,D) = Tr(I (θµ)) = Tr(− EX∼ρ,U∼πθ(·|X)

[
∇2

θµ
log πθ(U | X)

]
)). As

discussed in 4.4.2, this quantity reflects the regularity of the policy and mightbe related to the flatness of the local minima of the objective function.Figure 4.3 shows the distribution under πθ of the trace of the state condi-tional Fisher Information of the numerical optimal solution θ∗
µ,αHi for the policy

w.r.t. the αHi used during optimisation. In other words, a kernel density estima-tor of the distribution of Tr(I(πθ∗
µ,αHi

( · | X))) when X ∼ ρπθ∗ is represented.
The results of this experiment suggest first, this distribution is skewed nega-tively and has a fat right tail. This means some regions of the support of ρπθ∗

provide FIM trace with extreme positive values, meaning the regularity of thepolicy may be poor in these regions of the state space.A comparison of the distribution w.r.t. the different αHi sheds further light onthe relation between robustness and regularity. In fact, there appears to bea correspondence between the robustness, as indicated by the rate of excessrisk under noise R̊π shown in Figure 4.1 and the concentration of the trace dis-tribution toward larger values (i.e. more irregular policies) when the model isless robust.Meanwhile, under the considerations of 4.4.2 and since it is known that en-tropy regularisation favours flat minima in RL (Z. Ahmed et al. 2019),these ex-perimental results support the hypothesis of an existing relationship betweenrobustness, objective function flatness around the solution θ∗ and conditionalFisher information of θ∗.For a complementary point of view, a supplementary experiment regardingthe sensitivity of the policy updates during training w.r.t. to different level ofentropy is also presented in Section 4.7.
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Figure 4.3: Distribution of the trace of the (conditional) Fisher information of the nu-merical optimal solution θ∗
µ,αHi for the policy w.r.t. the αHi used during optimisation.

From left to right: Lorenz and KS environments. Colours: control experiment αHi = 0(black); intermediate entropy level αHi (blue); largest αHi (red).A skewed distribution towards (relatively) larger values is observed for all controlleddynamical systems. Moreover, those right tails exhibit high kurtosis, especially for thecontrol experiment (black) and the model with the larger entropy coefficient (red) forthe KS system. Finally, solutionswith intermediate entropy levels (blue) aremuchmoreconcentrated—have lower variance than the others. About Lorenz, the barycenter ofthe more robust model (red) is shifted towards lower values than the others.

4.7 Complement: Weights sensitivity during train-
ing

This section is intended to provide complementary insights on the optimisationlandscape induced by the entropy coefficient αH during training from the con-servative or trust region policy optimisation point of view (Kakade and Langford2002; Schulman, Levine, et al. 2015).
Let (θαHm

)mD

m=1
be the sequence of weights of the policy during the training

of the model for some initial entropy coefficient αH. The conditional Kullback-Leibler divergence between the policy identified by the parameters θαHm and thesubsequent policy defined by the parameters θαHm+1 is given by
DKL

(
θα

H
m , θα

H
m+1

)
= EX∼ρ

[∫
U log

(
π
θα

H
m

(du|X)

π
θα

H
m+1

(du|X)

)
π
θα

H
m+1

(du | X)

]
.

The above quantity is a measure of the divergence from the policy at timem tothe policy at timem+ 1. Thus it may provide information on the local stiffnessof the optimisation landscape during training.Figure 4.4 shows the evolution of the Kullback-Leibler divergence betweentwo subsequent policies during training for the Lorenz and KS controlled dif-ferential equations. Regarding the Lorenz system, the maximal divergence isreached for the optimisation performed with the two lowest αHi while increas-ing entropy seems to slightly reduce the divergence. On the other hand, the
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highest divergence values observed for the KS system are reached for αHi = 0and the maximal entropy coefficient. This observation is coherent with the re-sults of the previous sections and suggests that the entropy coefficient αH im-pacts the optimisation landscape during training.Interesting questions regarding the optimisation landscape and its link withthe Fisher Information (through the point of view of Information Geometry(Amari 1998)) are raised by the results of this section but are left for future work.

(a) Lorenz (b) Kuramoto-Sivashinsky

Figure 4.4: Evolution of DKL
(
θα

H
m , θα

H
m+1

) during training for the Lorenz and KS con-
trolled differential equations. For Lorenz, the maximal divergence is reached for theoptimisation performed with αHi = 0 and the second lowest αHi. Regarding KS, thehighest divergence values are observed for αHi = 0 and the maximal entropy coeffi-cient.

4.8 Discussion
In this study, the question of the robustness of maximum entropy policiesunder noise is studied. After introducing the notion of complexity measuresfrom the statistical learning theory literature, numerical evidence supports thehypothesis that maximum entropy regularisation induces robustness undernoise. Moreover, norm-based complexitymeasures are shown to be correlatedwith the robustness of the model. Then, the average trace of the Fisher Infor-mation is shown to be a relevant indicator of the regularity of the policy. Thissuggests the existence of a link between robustness, regularity and entropyregularisation.
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5 Increasing Information for
Model Predictive Control with
Semi Markov Decision Processes

This chapter aims at addressing the problem of the sample complexity (seeSection 1.4.1) of the learning process in the context of Learning-based ModelPredictive Control (LB-MPC). This work led to a conference paper published inthe proceedings of the 6th Annual Learning for Dynamics & Control Conference(L4DC24) (Hosseinkhan Boucher, Douka, et al. 2024).

5.1 Introduction
As discussed in the introduction of this thesis (Sections 1.2 and 1.3), MachineLearning Control (MLC) is an interdisciplinary area of statistical learning and con-trol theory that solves model-free optimal control problems (Duriez, Brunton,and Noack 2016). Among the multiple approaches of the vast field of data-driven control, two classes have received notable attention by the ML com-munity: Learning-Based Model Predictive Control (LB-MPC) (Hewing et al. 2020)andModel-Based Reinforcement Learning (MB-RL) (Abbeel, Quigley, and Ng 2006;Recht 2018; Moerland et al. 2022). The former refers to the combination of Mo-del Predictive Control (MPC), an optimisation method based on a sufficiently de-scriptive model of the system dynamics (Grüne and Pannek 2011), and learningmethods which enable the improvement of the prediction model from recor-ded data while possibly modelling uncertainty (Aswani et al. 2013; Koller et al.2019). The latter combines general function approximators such as linear mod-els (Tsitsiklis and Van Roy 1997), or more generally neural networks (Sutton,McAllester, et al. 1999), with Dynamic Programming (DP) (R. E. Bellman 1957) prin-ciples to solve the underlying optimisation problem.

Despite the recent impressive results in learning complex dynamical mod-els (Ha and Schmidhuber 2018), the sample complexity of the learning processremains a major issue in the field of data-driven control (Kakade 2003; G. Liet al. 2021, and see the references therein), in which the sample complexity isdefined as the sample size required to learn a good approximation of the tar-
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get concept (Mohri, Rostamizadeh, and Talwalkar 2018). For this reason, recentworks (Mehta, Char, et al. 2022; Mehta, Paria, et al. 2022) in LB-MPC have fo-cused on the design of exploration strategies based on the Information Theoryconcept of Expected Information Gain (EIG) or negative Conditional Mutual Infor-mation (CMI) (Lindley 1956). The resulting criterion allows for quantifying thegain of information given by a new state-control observation on the estimatedoptimal system trajectory. Hence, this tool can be used as an acquisition func-tion to guide the exploration of the state-control space. The concept of acqui-sition function is borrowed from the field of Bayesian Optimisation (BO). In par-ticular, the work of Mehta, Char, et al. 2022 relies on the broader black-box BOframework of Neiswanger, K. A. Wang, and Ermon 2021.
In a setting where the data is collected along the trajectory of the dynamicalsystem of interest, the diversity of the resulting dataset (which may be char-acterised by the quantity of information) is conditioned on the subsequentstates of the system. Informally, the setting in which the sampling procedureis constrained by the current system state may introduce information redun-dancy if the system exhibits high auto-correlation or if the current state is in aslowly evolving region of the state space. Indeed, as shown in Figure 5.1 (auto-correlation from a perturbated fixed point of a controlled Lorenz 63’ system),the auto-correlation from an initial state can be high on average for a long pe-riod of time while the control intensity allows reducing the correlation of thesequence of states.

Figure 5.1: (Corr(X0, Xk))k∈N for the controlled Lorenz system x3 component undermultiple control intensities.
However, for dynamical systems characterised by a wide range of time sca-les, the notion of temporal abstraction, described in the following paragraphs,(Precup 2000; Machado et al. 2023) may play a key role in overcoming the issuementioned here.
Abstraction in Artificial Intelligence refers to a broad range of techniques
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in order to provide a more compact representation of the problem at hand(Boutilier and Dearden 1994; Banse et al. 2023). In the framework of MarkovDecision Process (MDP),the work of Sutton, Precup, and Singh 1999 sheds lighton the limitation induced by standard MDP modeling: “There is no notion ofa course of action persisting over a variable period of time. [. . .] As a conse-quence, conventional MDP methods are unable to take advantage of the sim-plicities and efficiencies sometimes available at higher levels of temporal ab-straction.”
Temporal abstraction can refer to the concept of selecting the right level oftime granularity to facilitate the description of the world model to achieve agiven task. In simpler words, in the present case, temporal abstraction is theidea of representing and reasoning about actions and states at different time-scales and duration.
In the presentwork, temporal abstraction through Semi-Markov Decision Pro-cesses (SMDP)modeling is introduced to improve the informativeness of the se-quential exploration of the state-control space. SMDP modeling is shown toobtain a better sample complexity of the dynamics model estimator. This arti-cle thus extends the previous work of Mehta, Paria, et al. 2022 by introducingtemporal abstraction to the acquisition function. The chapter is organised asfollows. Section 5.2 reviews the related works. Section 5.3 introduces the prob-lem setting. Section 5.4 presents the hypothesis and the experimental setupwhile Section 4.6 presents the results and Section 5.6 concludes the chapter.

5.2 Related Works
Information Driven Model-Based Control The foundations of the BayesianExperimental Design have been laid by the seminal work of Lindley 1956 wherethe author presents a measure of the information provided by an experiment.More recently, MacKay 1992 termed Expected Information Gain (EIG) a measureof the information provided by an observation allowing, in his own terms, toactively select particularly salient data points. In the field of LB-MPC, such a cri-terion has been used to cherry-pick the most informative state-control pair tolearn the dynamics of the system (Mehta, Char, et al. 2022; Mehta, Paria, etal. 2022). Their work is based on the broader Bayesian Optimisation methodof Neiswanger, K. A. Wang, and Ermon 2021 designed to optimise “blackbox”functions. An extensive review of Bayesian Optimisation and its applications isavailable in this latter paper.
Learning-BasedModel PredictiveControl Thehistory of learning basedmo-dellingmay be traced back to the seminal work by Stratonovich 1960 in probabil-ity theory which stimulated several contributions, notably the work of Kalmanand Bucy 1961, that were to compose a body of work generally referred to as
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filtering theory. More recently, Kamthe and M. Deisenroth 2018 model the sys-tem dynamics with Gaussian Processes (GP) and use MPC for data efficiency.GPs are also used in the PILCO model (M. Deisenroth and C. Rasmussen 2011)which has a high influence in MB-RL. Koller et al. 2019 model the uncertaintyof the system dynamics for safe-RL. The work of Bonzanini and Mesbah 2020presents a stochastic LB-MPC strategy to handle this uncertainty.
Semi-Markov Decision Processes Temporal abstraction in ReinforcementLearning was pioneered in Sutton 1995 and Precup and Sutton 1997; Precup2000. Specifically, Sutton 1995 proposed learning a model and value functionat different levels of temporal abstraction. The actions in SMDPs take variableamounts of time and are intended tomodel temporally-extended courses of ac-tion. Recent works for continuous-time control use variants of Neural OrdinaryDifferential Equations to model dynamics delays (Du, Futoma, and Doshi-Velez2020; S. Holt et al. 2023). A classical use of SMDP is for queueing control andequipment maintenance (Puterman 2014) where time-delays are prominent.

5.3 Problem Setting

5.3.1 Control Model
This work considers a control model given by the following d-dimensional dis-crete time dynamical system X (Duflo 1997) on a probability space (Ω,F ,P)defined by

Xk+1 = F (Xk, Uk, vk)

X0 ∼ N (xe, σ
2
eIddX )

(5.1)
with Xk ∈ X , Uk ∈ U and vk ∈ V for any k ∈ N, where X , U and V are respec-tively the corresponding state, control and disturbance spaces. The initial statestarts from a reference state xe ∈ X (a system equilibrium or fixed point49) onwhich centered Gaussian noise with diagonal covariance is additively applied,
X0 ∼ N (xe, σ

2
eIddX ). The i.i.d. random process (vk)k∈N is such that vk is inde-pendent of all previous states and controls for any k ∈ N. The distribution of vkfor any k ∈ N is denoted by Pv. Coupled with the dynamics, an instantaneouscost function c : X × U → R+ is also given to define the control model.In the sequel, it will be convenient to define the control model as a Mar-kov Control Model (MCM) (O. Hernández-Lerma 1989) defined by the followingtransition probability P on X × U :

P(BX , (x, u)) =

∫
V
1BX (F (x, u, v))Pv(dv) = Pv({v ∈ V | F (x, u, v) ∈ BX})

(5.2)
49In this work a fixed point is considered as a point of the state space xe ∈ X such that

F (xe, 0, 0) = xe.
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for any BX ∈ B(X ) (Borel σ-algebra) and (x, u) ∈ X × U . The function 1 is theindicator function.Hence, the conditional distribution of Xk+1 given Xk and Uk is given by
P(BX , (x, u)) = P(Xk+1 ∈ BX | Xk = x, Uk = u) (5.3)

for any BX ∈ B(X ).Additionally, in this context, a policy π is a transition probability onU givenX ,i.e. a distribution on controls conditioned on states. In the rest of this chapter,
π (du | x) = δ{u} is the Dirac measure at u. Hence the notation is simplified to
π (x) = u.Together, a control model, a policy π and an initial distribution on X definea stochastic process with distribution Pπ on the space of trajectories (X ×U)K .The distribution of the process is given by P(dx0du0dx1 . . . ) = PX0(dx0)π(du0 |
dx0)P(dx1 | dx0, du0) . . . More details on the stochastic process are given inSection 2.3.3 and Onésimo Hernández-Lerma and Lasserre 1996; Puterman2014. Lastly, the history process (Hk)k∈N is defined as Hk = (X0, U0, . . . , Xk)for any k ∈ N. When k = K , HK is called the trajectory of the process. The pro-cess (Xk, Uk, Xk+1)k∈N is called the transition process and the marginal process
(Xk)k∈N is called a Markov Decision Process (MDP).
5.3.2 Control Problem
The studied control problem is to find a policy π∗ whichminimises the followingperformance criterion

Jπ = Eπ

[
K∑
k=0

c (Xk, Uk)

]
(5.4)

where K ∈ N is a given time-horizon and Eπ denotes the expectation underthe probability measure Pπ. Here, the quantity Jπ is called the value functionor objective function (see Section 3.1.4). The history process under π∗ is calledthe optimal history process and is denoted by (H∗
k)k∈N and the random variable

H∗
K is called the optimal trajectory.In this work, the optimal policy π∗ is estimated with Model Predictive Control(MPC) applied on a model of the dynamics.TheMPCprocedure (see Section 3.3.3) is performedwith the iCEM algorithm,an improved version of the Cross Entropy Method (CEM) (Rubinstein and Kroese2004; Pinneri et al. 2021), a zeroth order optimisation algorithmbasedonMonte-Carlo estimation.

5.3.3 Gaussian Process Modeling
The use of Gaussian Process (GP) regression tomodel relevant quantities of con-trolled dynamical systems has long been proposed (Kuss and C. Rasmussen
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2003; M. Deisenroth and C. Rasmussen 2011; Kamthe and M. Deisenroth 2018)notably for its distributional nature thus its ability to model uncertainty. By def-inition, a GP is a stochastic process (here indexed byX ×U ) such that any finitecollection of random variables has a joint Gaussian distribution.Continuing from the aforementioned papers, Gaussian Process regressionis used to model the transition probability P with a model estimator P̂D suchthat
P̂D( · , (x, u)) ∼ N (µ(x, u), Σ ((x, u), (x, u)) | D) (5.5)

where µ and Σ are respectively the mean and covariance functions of the GPandD is a dataset of observations from the transition process (Xk, Uk, Xk+1)k∈N.The distribution P̂D of Equation (5.5) is the predictive posterior distribution ofthe GP conditioned on the datasetD (the reader is referred to C. E. Rasmussenand C. K. I. Williams 2006 for more details on GP regression). The processes
X̂ , Û and Ĥ are respectively the state, control and history processes under theapproximate model and the same rules of notation apply as for the originalprocesses. TheMPCpolicy obtainedwith the approximatemodel P̂D is denotedby π̂MPC. The history process under π̂MPC is denoted by ĤMPC = (ĤMPC

k )k∈N andthe objective function under π̂MPC is denoted by ĴMPC.Notably, this work focuses on the sample complexity required to estimate a mo-del P̂D of the true dynamics P accurate enough to obtain a MPC policy π̂MPC that isclose to the optimal policy π∗.Hence, two time units are considered: the sampling iteration n which rep-resents the number of observations gathered from the system so far, and thetime index k of the current state Xk of the underlying dynamical system X . Itis supposed in the following that n ≤ k: it is not possible to gather more obser-vations than the number of time steps of the system.
5.3.4 Expected Information Gain
For a fixed sampling budget n and a fixed configuration (e.g. the horizonKMPC,the number of samples for the Monte-Carlo estimation of the cost or the otherhyper-parameters of the iCEM algorithm) to perform the MPC procedure πMPC,the control performance mainly lies in the quality of the model estimator P̂Dn .It depends on two main elements: the choice a priori of the mean and ker-nel functions µ and Σ and the collection Dn of n observations. From the workof Mehta, Char, et al. 2022; Mehta, Paria, et al. 2022, the selection of the ob-servations can be guided by the maximisation of the Expected Information Gain(EIG) on the optimal trajectory.Let suppose the time iteration k of the underlying observed process X isequal to the number of samples gathered, i.e. k = n and the dataset is alreadycollected50 at the sampling iteration n such that Dn = ((xi, ui, x

′
i))

n−1
i=0 and de-note by (Xn, Un) a new random state-control pair to draw from the system. The

50In this specific case of k = n, the dataset Dn simply contains the whole past trajectory of
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goal is to select the state-control pair (x, u) that maximises the Expected Infor-mation Gain EIG on the optimal trajectory which is defined by
EIGn(x, u) := H1 − EPXn+1|Dn,Xn=x, Un=u

[H2 (x, u,Xn+1)] (5.6)
with

H1 := H
[
Ĥ∗

K | Dn

] (5.7)
H2 (x, u,Xn+1) := H

[
Ĥ∗

K | Dn, Xn = x, Un = u,Xn+1

] (5.8)
where H denotes the differential entropy of a random variable. In other

words, given a level of uncertainty H
[
Ĥ∗

K | Dn

] on the optimal trajectory Ĥ∗
K ,the EIG measures the reduction of this uncertainty when the dataset of themodel estimator is augmented with the transition tuple (x, u,Xn+1).An intriguing interpretation can be made by noticing that (5.6) is also equalto the negative Conditional Mutual Information (CMI) (Pinsker 1964; Cover andThomas 2006) of the optimal trajectory Ĥ∗

K and the new state Xn+1 given thedataset Dn and the state-control pair (Xn, Un).51 Thus, maximising the EIGis equivalent to minimising the CMI between the optimal trajectory and thenew transition tuple hence tending to draw new states sharing less informa-tion with the optimal trajectory conditioned on the dataset Dn and the event(Xn = x, Un = u). Indeed, by definition, the CMI quantifies the independencebetween the distribution of the optimal trajectory and the distribution of thenew state given both the dataset and the current state-control pair.By symmetry of the EIG, a more tractable formulation is given by
EIGn(x, u) := H′

1 (x, u)− E
PĤ∗

T
|Dn

[
H′

2(x, u, Ĥ
∗
T )
] (5.9)

with
H′

1(x, u) := H
[
Xn+1 | Dn, Xn = x, Un = u

] (5.10)
H′

2(x, u, Ĥ
∗
T ) := H

[
Xn+1 | Dn, Xn = x, Un = u, Ĥ∗

T

] (5.11)
It is in practice estimated byMonte-Carlo sampling as detailed in Section 5.4.In the original work of Mehta, Char, et al. 2022, the EIG is maximised witha greedy Monte-Carlo algorithm (uniform sampling) that selects the next state-control pair (x, u) to interact with the true system and subsequently update thedatasetDn with the new transition tuple (x, u, x′)where x′ is sampled from the

X , it is a realisation ofHn, in other words Dn = Hn(ω) for some random outcome ω ∈ Ω.51Here and after, a slight abuse of notation is made as the dataset Dn should be written
Dn = ((xi, ui, x

′
i))

n−1
i=0 since the sole random quantities are Xn and Ĥ∗

K but it is omitted forthe sake of readability.
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true transition probability P( · , (x, u)). It assumes any state-control pair (x, u)can be evaluated and queried at any time step. The authors’ algorithm is calledBayesian Active Reinforcement Learning (BARL); the dataset and EIG obtainedwiththis algorithm are denoted byDBARL
n and EIGBARL respectively. In this setting, thedataset support is the whole state-control space, Supp(DBARL

n ) = (X ×U ×X )n.However, in many real-world applications, the system is not always control-lable and the state-control pairs that can be queried are limited to a subsetinduced by the system trajectory. This constraint has been considered in thework following the original paper (Mehta, Paria, et al. 2022) where the authorsproposed to restrict the dataset support to the trajectory of the system. Thissecond algorithm is called52 Trajectory Information Planning (TIP) and similarlythe dataset and EIG obtained with this algorithm are denoted byDTIP
n and EIGTIP

respectively.In this case, the dataset support is limited to the trajectory of the system,
Supp(DTIP

n ) ⊆ {((xk, uk, xk+1))
n
k=1 ∈ (X × U × X )n | ∃(vk)nk=1 ∈ Vn, xk+1 =

F (xk, uk, vk), 0 ≤ i ≤ n} ⊆ (X × U × X )n = Supp(DBARL
n ). This set inclusionimplies that the optimal EIG obtained with TIP is lower than the one obtainedwith BARL provided the transition probability estimator P̂Dn are the same forboth algorithms for a fixed current state x ∈ X , max{(x,u′), u′∈U} EIG(x, u′) ≤

max{(x′,u′)∈X×U} EIG(x′, u′).Besides, the latter algorithm (TIP) does not take into account the potentialbenefits of including dynamics time scales in the sampling process. In the nextsection, an extension of the TIP algorithm is proposed to increase the EIG foreach of the sampling iterations through the introduction of delayed state-controlpairs in the setting of Semi-Markov Decision Processes (SMDP). The new algorithmbuilds upon TIP by considering the inclusion of temporally-extended actions inthe data-collection procedure to reach more distant system states that are notreachable with the original TIP algorithm, hence increasing the amount of infor-mation gathered from the system. A similar use of action repetition improveslearning in Deep-RL (Sharma, A. S. Lakshminarayanan, and Ravindran 2017; A.Lakshminarayanan, Sharma, and Ravindran 2017).
5.3.5 Semi-Markov Decision Processes Extension
A formal definition of temporal abstraction is given through the concept of op-tions defined by Sutton, Precup, and Singh 1999 where it refers to temporallyextended courses of action. This concept has been shown by Parr 1998 to beequivalent to the construction of Semi-Markov Decision Processes (SMDP) whichare defined below.Let call decision epoch the time index k of the underlying dynamics (Xk)k∈N

52It is important tomention that themain asset of TIP is to provide a whole trajectory as inputto the EIG, which is not used in this work. Thus, only the property of querying observation byfollowing the trajectory of the system is used here.
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defined by equation (5.1). Semi-Markov Control Models (SMCM) generalise theconcept of MCM by letting the decisions be random variables. Indeed, con-sider a strictly increasing random sequence (κj)j∈N of integers. The randomquantities ηj = κj − κj−1 with support in some finite space S ⊊ N \ {0} arecalled inter-decision times and the random index κj are called random decisionepochs. The resulting stochastic process (Xκj
)j∈N is called a semi-Markov Deci-sion Process. For a more detailed probabilistic construction, see Puterman 2014,p. 534 and O. Hernández-Lerma 1989, p. 15.In the scopeof thiswork, SMDPare used tomodel the temporal extension of thecontrol process. The corresponding SMCM is introduced by first extending thecontrol space from U to U × S such that the temporal extension of the controlis encoded in the last coordinate of the control tuple, and the new dynamicsis given by PSMDP(dx′ | (x, (u, σ))) = P(Xk+σ | Xk = x, Uk:k+σ−1 = u) where

Uk:k+σ−1 = umeans that the control process is constant between k and k+σ− 1.The latter definition illustrates the fact that during the inter-decision time η = σ,the control process is constant and equal to u.From now on, this construction allows to enlarge the support of the dataset
Dn, for a fixed number of observations nwhile maintaining a rollout, trajectory-based sampling procedure. Indeed, the dataset support is now Supp(DSM-TIP

n ) ⊆
{((xkj , ukj , xkj+1))

n
j=1 ∈ (X ×U ×X )n | ∃(vk)n sup(S)

k=1 ∈ Vn sup(S), xk+1 = F (xk, uk,
vk), 0 ≤ k ≤ n sup (S) , (kj)nj=1 ∈ Sn, kj < kj+1}, the transitions tuples ex-tracted from the set of all possible subsequences of the trajectory up to themaximal reachable time value.Therefore, Supp(DTIP

n ) ⊆ Supp(DSM-TIP
n ). Consequently, this suggests an ex-tension of the EIG to the SMDP setting. Let σ ∈ S be an inter-decision time and

DSM-TIP
n be the dataset under the SMDP setting at the sampling iteration n, theresulting EIGSM-TIP

n (x, (u, σ)) is defined as
EIGSM-TIP

n (x, (u, σ)) := H′′
1(x, u, σ)− EPĤ∗

T
|Dn

[
H′′

2(x, u, σ, Ĥ
∗
T )
] (5.12)

H′′
1(x, u, σ) := H

[
Xκn+σ+1|Dn, Xκn = x, Uκn:κn+σ= u, κn

] (5.13)
H′′

2(x, u, σ, Ĥ
∗
T ) := H

[
Xκn+σ+1 |Dn, Xκn= x, Uκn:κn+σ= u, Ĥ∗

T , κn

] (5.14)
Hence, this measure allows the introduction of temporal abstraction in thesampling procedure by considering the inter-decision delay to increase the po-tential information gain. However, despite being tractable in trajectory rolloutsettings, the metric defined by (5.12) needs to look ahead in the future to becomputed (non-causal). Last, note that EIGSM-TIP(x, u, 1) = EIGTIP(x, u).

5.4 Method and Experiments
Themain objective of this work is to demonstrate the increase in the total infor-mation gathered from a system with the introduction of temporal abstraction

111



via the EIGSM-TIP measure. To this end, a comparison between the original TIPalgorithm and the proposed SMDP extension is performed on two controlleddynamical systems, the Inverted Pendulum (Trélat 2005) and the Lorenz Attrac-tor (Vincent and Yu 1991).The algorithm controls the path of the dynamical system (Xk)k∈N and col-
lects observations (Xi, Ui, Xi+1)

n−1
i=0 to populate the dataset Dn and improve

the GP transition probability estimator P̂Dn . The indices n and k are respec-tively the sampling iteration and the time index of the underlying dynamicalsystem (Xk)k∈N. The TIP algorithm supposes n = k (data collected at each timestep) while n ≤ k (there are time steps where no data is collected) for the SMDPextension. In the SMDP case, the inter-decision time ηn rules the optional sam-pling procedure which defines the random decision epochs κn = κn−1+ηn. Therandom decision epochs κn define when the algorithm can query the system
(Xk)k∈N.To estimate EIGSM-TIP

n , a collection of bootstrapped future states, candidatecontrol points and inter-decision times are sampled. The bootstrapped futurestates Xκn+σ = xσ are estimated with the GP model. This may lead to a bias inthe estimation of the EIG due to the bootstrapping error. The candidate con-trol points and inter-decision times (u, σ) are sampled from a uniform distribu-tion Unif (U × S) at time κn to solve argmax(u, σ)∈U×S EIGSM-TIP
n (xσ, (u, σ)). In thiswork, S = {1, . . . , σmax} for some σmax ∈ N. The EIGSM-TIP

n is estimated by the
Monte-Carlo estimator ÊIGSM-TIP

n (x, (u, σ)) given by
H [Xκn+σ+1 | Dn, Xκn = x, Uκn+σ = u, κn]−

1

m

m∑
i=1

Ĥ′′
2(x, u, σ, Ĥ

MPC
ki

) (5.15)
with

Ĥ′′
2(x, u, σ, Ĥ

MPC
ki

) := H
[
Xκn+σ+1 | Dn, Xκn = x, Uκn+σ = u, ĤMPC

ki
, κn

] (5.16)
wherem is the number of Monte-Carlo samples of the optimal trajectory ĤMPC

kiunder P̂Dn . The entropy values are easily computed since the conditional dis-tribution of the new state given the dataset, and the current state-control pairis a Gaussian distribution with mean and covariance given by the GP posterior.More details on this procedure and the settings used are available in the paperof Mehta, Paria, et al. 2022.Every two sampling iterationsn, theMPCpolicy π̂MPC is evaluated on the truesystem and the objective function is computed. Four independent experimentswith differentmaximal inter-decision time σmax ∈ {1, 2, 4, 8} are performed. Foreach of the experiments, the algorithm is run for 10 independent trials (seeds)to alleviate the variability proper to data-driven control methods (Hendersonet al. 2018). The cost function is defined as (x, u) 7→ c(x, u) := ∥x∥2 in thecase of the Lorenz attractor while the classic Gym (Brockman et al. 2016) costfunction (also norm-based) is used for the Inverted Pendulum. The sampling
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budget is set to nmax = 100 for the Lorenz system and nmax = 200 for theInverted Pendulum. To implement the SMDP, the system is stepped forward intime with the action kept constant during inter-decision times. Details on theimplementation and experimental settings are available on https://github.c
om/ReHoss/lbmpc_semimarkov.

5.5 Results
Among the relevant quantities to be reported, the evolution of the EIG, the in-terdecision times and the evaluation of the objective function are of interest toquestion the hypothesis raised in Section 5.4.First, the evolution of the amount of information gathered during samplingthrough a comparison of (EIGTIP

n )nmax
n=1 , and (EIGSM-TIP

n )nmax
n=1 presented in Figure 5.2to assess the impact of the SMDP extension. Second, the corresponding inter-decision times (ηn)nmax

n=1 are shown in Figure 5.3 to evaluate the necessity of tem-poral abstraction. Lastly, the evolution of the objective function J π̂MPC from 5fixed initial conditions X0 is shown as a function of the sampling iteration n inFigure 5.4 to analyse the effective results of the proposed method. For all thefigures, the shaded area represents the standard error over the 10 independenttrials.About the first point, one can observe that in all cases, the EIG is largerfor SM-TIP than for TIP (σmax = 1) until one-fourth of the sampling budget isreached. This suggests that the SMDP extension is beneficial to the informa-tion gathering process at the beginning of the sampling procedure. This maybe explained by the fact that the inter-decision times allow to de-correlate thecollected states via the same mechanism illustrated in Figure 5.1. Note alsothat, in the case of Lorenz (Figure 5.2a), the EIG after approximately half of thesampling procedure is superior for TIP than SM-TIP since more information(state-actions pairs minimising the mutual information) remain to be gathered.
Examining the chosen inter-decision times (ηn)nmax

n=1 , it can first be observedthat globally ηn > 1 for the SMDP algorithms (where σmax > 1). This shows thatthe sequential maximal EIG is approximately reached for inter-decision timesthat are larger than the original MDP decision times. This confirms the rele-vance of temporal abstraction to increase the information gathering process.However, the inter-decision times are not necessarily always equal to σmax, sug-gesting the more informative observations are not always the temporally mostdistant ones.Moving on to the objective function, in the case of the Lorenz system (Fig-ure 5.4a), the evaluation performances show the learning speed is greater forthe SM-TIP settings (σmax > 1) than for the TIP setting (σmax = 1). For the Pen-dulum case (Figure 5.4b), except for the SM-TIP setting where σmax = 8, theproposed approach shows better sample complexity since very few iterations
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(a) Lorenz (b) Pendulum
Figure 5.2: Evolution of the Expected Information Gain EIGSM-TIP over the number ofsampling iterations.

(a) Lorenz (b) Pendulum
Figure 5.3: Inter-decision time η chosen by the SMDP during training.

are required to reach optimality (light blue curves (σmax ∈ {2, 4}) are below thegrey curve (σmax = 1) for the first (up to n = 20) sampling iterations. Further-more, one of the reasons the σmax = 8 fails to achieve optimal performancesis likely the bootstrapping prediction error (not shown in this document) whichincreases with σmax. Indeed, as mentioned in Section 5.4 due to the non-causalproperty of EIGSM-TIP, there exists a trade-off between the temporal extension ofthe dynamics to reach the new region of the state space and the bootstrappingerror which increases with the temporal extension.

5.6 Conclusion
This study demonstrates that, when restricted to the trajectory of the system,the total information gathered for a given sampling budget can be increased by
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(a) Lorenz (b) Pendulum
Figure 5.4: Evolution of the objective function J π̂MPC to evaluate the systemduring train-ing.

introducing temporal abstraction through the usage of SMDPs. Results showthat learning the dynamics of the Inverted Pendulum and the Lorenz system ismore data-efficient with the use of temporally-extended actions.Future work may extend this methodology to more complex systems, lever-aging the flexibility of SMDPs. These systems may have the potential to reachhighly informative regions and efficiently capture rapid changes in system dy-namics, as the information content can be increasedwhen considering the timeresolution as a decision variable.In summary, this work offers a concise yet comprehensive glimpse into thepotential of SMDPs in Model Predictive Control. The results on known systemsestablish a robust foundation for broader applications and unveil potential fu-ture advancements in control strategies.
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6 Distributional Reinforcement
Learning is Sample Efficient

This chapter presents the main results obtained during the first months of thePhD project, on the application of Distributional Reinforcement Learning tochaotic dynamical systems.

6.1 Introduction
A modern approach called Distributional Reinforcement Learning (D-RL) definedin Bellemare, Dabney, and Munos 2017 shows impressive capabilities, both interms of policy performance and data efficiency. The distributional aspect oflearning describes the approximation of probability distributions in oppositionto classical regression. In the case of Reinforcement Learning, the distributionof the random total cost given an initial state and control pair is considered.
6.1.1 Learning Distributions
The inference of unknown probability distribution has a long and complex his-tory in the pattern recognition and statistics literature.
Machine Learning and Statistics

The reader may consult Kearns et al. 1994 and the references therein to learnmore about the origins of the question of probability distribution approxima-tion. Learning distributions is a core concept of generative modelling (Hinton,Osindero, and Teh 2006) and unsupervised learning (Hastie, Tibshirani, and J.Friedman 2013). It is the central goal in nonparametric density estimation andBayesian statistics (see Section 3.2.3).
Reinforcement Learning

In RL, a generativemodel for the random total cost given an initial state and con-trol pair is learned. This approach has been initially considered in a Bayesiansetting (see Section 3.2.3) to quantify the information acquired by exploration
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(Dearden, N. Friedman, and Russell 1998), and later for risk management appli-cations (Morimura et al. 2010). More recently, this idea became the core con-cept of the distributional RL paradigm. In the foundational paper Bellemare,Dabney, and Munos 2017, the fundamental importance of the total cost as adistribution, in contrast to the total cost in expectation, is shown. The theoret-ical properties of the distributional approach are exposed, and its differencewith classical RL is presented. Notably, an operator acting on conditional distri-butions is defined, echoing the Bellman operator acting on conditional expec-tations in classical RL.
6.1.2 Advantages of the Distributional Approach
Multiple benefits of the distributional approach have been identified in the lit-erature.
Stability and Sample Efficiency

Among them, the distributional Bellman operator preserves multi-modality invalue distributions, which may improve the stability of the learning process.Therefore, D-RL algorithms show improved empirical sample efficiency. More-over, Bellemare, Dabney, andMunos 2017 argue that D-RL algorithms aremorerobust against non-stationary (time-dependent) policy than standard RL, andmore globally, this paradigm makes the reinforcement learning process signif-icantly better behaved.
A Novelty in the Flow Control Literature

Being recently introduced, the distributional approach has not been tested bythe research community interested in dynamical systems connected with flowcontrol.53 Indeed, while a large part of the D-RL publications apply to roboticsenvironment, the field of flow control could benefit from the potential advan-tages of this method.
6.1.3 Research Objectives and Experimental Setup
Miniaturised Chaotic Systems

Important properties of fluid flows such as chaos or symmetry are well incorpo-rated in simple, miniaturised, chaotic systems such as the Lorenz or Kuramoto-Sivashinsky dynamics. They are an appropriate testbed for evaluating DeepReinforcement Learning before scaling up to more complex systems such asNavier-Stokes (Cvitanović, Davidchack, and Siminos 2010).
53This work has been conducted during winter 2022–2023 when no paper on the applicationof D-RL to flow control has been issued.
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Hypotheses and Objectives

This work tests two main hypotheses on the distributional approach to RL ap-plied to chaotic dynamical systems. First, the distributional approach is moresample efficient than the classical approach for the control of representativechaotic systems. Second, the distributional generalises better for controllingfrom other parts of the state space than the classical approach. The two ques-tions try to address the sample efficiency and the robustness challenges of RLin the context of flow control (those challenges are introduced in Section 1.4.1).

6.2 Distributional Reinforcement Learning

6.2.1 The Distributional Perspective
Consider the random total cost defined in Eq. (3.8) in a Markovian setting (theinitial history distribution only depends on X0).

Z (PX0 , π) =
K∑
i=0

γic (Xk, πk) (6.1)
To alleviate the notation, this random variable is simply denotedZ in the follow-ing but the reader should keep inmind that it depends on the initial distribution
PX0 .
Total Cost Conditional Distribution

The principal feature of the paradigm defined by Distributional ReinforcementLearning is to consider value distributions instead of value functions. The valuefunction for a state or a state-control pair under some policy π gives the ex-pected value of the random total cost given the initial state or state-control pair.In contrast, D-RL considers the distribution under some policy of the randomtotal cost conditioned on an initial state or state-control pair.
Definition 6.2.1 (Conditional Random Objective Function). The conditional ran-dom objective function is defined as the conditional distribution of the random totalcost Z given (X0, U0). For all (x, u) ∈ X ×U , the conditional random objective func-tion is denoted by Z(x, u) for (X0, U0) = (x, u).Consequently, a closed-form expression of the conditional random objectivefunction is given by

Z(x, u) := c(x, u) + γ

K∑
i=1

γi−1c (Xi, πi) (6.2)
By definition of conditional probability, the quantity Z(x, u) is still a random vari-able for all (x, u) ∈ X × U . Note that this definition is equivalent as choosing
PX0 = δ{x} and π = (πk)k∈J0,KK where π0 = δ{u} in Eq. (6.1).
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Link with the Q-function

Moreover, as the random total costZ(x, u) is a random variable for any (x, u) ∈
X × U , the expectation of this random variable is well-defined if Z(x, u) is inte-grable. This expectation is the Q-value function (see Section 3.1.4).
Proposition 6.2.1 (Link between Z-function and Q-function). The expectation ofthe conditional random objective function Z is the Q-function Q.

Q(x, u) = E [Z(x, u)] (6.3)
for any (x, u) ∈ X × U .
Proof. The proof is straightforward by definition of the soft Q-function and theconditional random objective function. Use Definition 11.5.2 in Jean-François LeGall 2006.
The Distributional Bellman Operator

The Distributional Bellman operator is the analogue to the Bellman operator(Theorem 3.1.1) in the distributional setting. Again, such fixed point operator isdefined for criteria with infinite horizon.
Definition 6.2.2 (Distributional Bellman Operator). Suppose thatK = +∞. Thedistributional Bellman operator T is

T πZ(x, u) := c(x, u) + γP [Z (X1, U1) | X0 = x, U0 = u] (6.4)
for any (x, u) ∈ X × U . The notation P [Z (X1, U1) | X0 = x, U0 = u] denotes theconditional distribution of the random total cost Z given (X0, U0) = (x, u).An alternative form of the operator is

T πZ(x, u) := c(x, u) + γZ (X ′, U ′) (6.5)
where X ′ ∼ P( · | x, u) and U ′ ∼ π( · | X ′).
Remark 6.2.1. The distribution T πZ(x, u) has multiple sources of randomness:

• The randomness of the next state-control pair (X ′, U ′)

• The randomness of the total cost Z (X ′, U ′)

It can be shown that the distributional Bellman operator is a contractionmapping for a specific metric based on the Wasserstein distance (Bellemare,Dabney, and Munos 2017). This allows for generalising temporal differencelearning algorithms to the distributional setting.
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6.2.2 Distributional RL with Quantile Regression
Being scalar-valued, the random total cost of Equation (6.2) can be regardedas an element of a metric space where the metric is totally characterised by itscumulative distribution function (c.d.f.).
Cumulative Distribution Functions and Quantiles Functions

Let FZ̄ be the cumulative distribution function of any real-valued random vari-able Z̄. The c.d.f. is defined by FZ̄(q) = P(Z̄ ≤ q) for any q ∈ R+. Let F−1
Z̄

be the
general inverse c.d.f. (also called quantile function) defined by F−1

Z̄
(p) := inf{q ∈

R+ | FZ̄(q) ≥ p} for any p ∈ [0, 1]. The value F−1
Z̄

(p) is the p-quantile of the ran-
dom variable Z̄. When FZ̄ is continuous and strictly increasing, F−1

Z̄
coincidewith the inverse function of FZ̄ (otherwise the mapping is not bijective).A well-knownmetric space on probability distributions can be based on theconcept of quantile functions.

Wasserstein Distance

Because D-RL focuses on distributions, a notion of distance between randomvariables (more generally over distributions) is relevant. The Wasserstein dis-tance (Villani 2008; Santambrogio 2015) is a suitable choice for this purpose.This metric measures the cost of transporting the probability mass of one dis-tribution to the other, for some arbitrary chosen cost (e.g. the Lp norm). Apractical formulation of this distance in the unidimensional case (real randomvariables) is given in terms of quantile functions.
Definition 6.2.3 (Wasserstein Distance - Quantile Version). The Wasserstein dis-tance of order p ∈ [1,+∞[ between two real random variables Z̄1 and Z̄2 is definedby

Wp

(
PZ̄1

,PZ̄2)

)
=

(∫ 1

0

∣∣∣F−1
Z̄1

(ω)− F−1
Z̄2

(ω)
∣∣∣p dω) 1

p (6.6)
where PZ̄i

and FZ̄i
are the distribution and the c.d.f. of Z̄i for i ∈ {1, 2}, respectively.

The objective of the method presented in Dabney et al. 2018 is to constructan optimal estimator Ẑ of the target conditional distribution Z that minimisesthe Wasserstein distance between the true distribution Z and the estimator Ẑ.However, the Wasserstein distance is not directly minimised in practice.
Wasserstein Gradients are Biased

Viewed as a risk function, the Wasserstein distance exhibits an important lim-itation for practical applications based on gradient descent optimisation. In-deed, its estimation using empirical distribution leads to biased gradients. Forinstance, say that the target distribution PZ̄1
is approximated by the empirical
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distribution P̂Z̄1
and that the distribution PZ̄2

is parametrised by an element
f̄ ∈ F or θ ∈ Θ such that PZ̄2

= Pf̄ or PZ̄2
= Pθ. Then, the following result dueto Bellemare, Danihelka, et al. 2017 holds

Proposition 6.2.2 (Biased Gradient of the Wasserstein Distance). There exists a(target) distribution PZ̄1
approximated by its corresponding empirical distribution

P̂Z̄1
= 1

N

∑N
i=1 δ{Z̄1

(i)} for someN ∈ N∗ and there exists a parametrised distribution
Pθ with parameter θ ∈ Θ such that

argmin
θ∈Θ

∇θW
p
p (PZ̄1

,Pθ) ̸= argmin
θ∈Θ

E
[
∇θW

p
p

(
P̂Z̄1

,Pθ

)] (6.7)
whereWp is theWasserstein distance of order p ∈ [1,+∞[ defined in Definition 6.2.3.The gradient of theWasserstein distance to the power p is biasedwhen estimatedusing empirical distributions.
Proof. See Bellemare, Danihelka, et al. 2017.

This result is relatively weak but contraindicates a general use of gradient-based optimisation over a Wasserstein risk for estimating an approximation Ẑof the random total cost distribution Z. Within this context, an approach basedon the use of a loss function that allows unbiased gradient estimation is beingsought.
Quantile Distribution

To this end, a specific space of distribution is constructed such that a Wasser-stein metric minimisation can be achieved through a learning task that exhibitsunbiased gradients. Hence, for each (x, u) ∈ X × U , the authors of the refer-ence paper define what they call a quantile (conditional) distribution that is amapping from X ×U to the set of discrete uniform probability distributions ona finite set of quantiles (qi)i∈J1,NqK which will be learnt by the algorithm.
Definition 6.2.4 (Quantile Distribution). A Nq-quantiles distribution Ẑ is a map-ping

Ẑ : X × U → P(Unif,Nq)

(x, u) 7→ Unif((q̂i (x, u))i∈J1,NqK

) (6.8)
where P(Unif,Nq) is the set of discrete uniform probability distributions on Nq atomsand Unif((q̂i)i∈J1,NqK) is the uniform probability distribution on the set (q̂i)i∈J1,NqK.Hence, for any (x, u) ∈ X ×U , Ẑ(x, u) ∼ Unif((q̂i(x, u))i∈J1,NqK). The set of quantiledistributions is denoted by FQR.
Remark 6.2.2. Since quantile regression involves a family of risk functions indexedby quantile levels λ ∈ [0, 1], the computational complexity of algorithms based onthis approach is Nq times higher than the classical regression methods.
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Remark 6.2.3. For a fixed quantile order λ ∈ [0, 1], the task ℓλ is an asymmetricconvex functional penalising overestimation errors with weight λ and underestima-tion errors with weight 1− λ.
This way, conditional distributions in FQR are characterised by a finite set ofquantiles functions. Thus, this approach amounts to estimating optimal quan-tiles (q̂i(x, u))i∈J1,NqK for each (x, u) ∈ X ×U such that the Wasserstein distance

between the true distribution Z(x, u) and the estimator Ẑ(x, u) is minimised.Now, the hypothesis space considered is the set of all conditional quantile dis-tributions which is denoted by FQR. Thus, Ẑ(x, u) ∈ FQR.It turns out that it can be shown (Dabney et al. 2018) that for a uniform dis-cretisation of [0, 1] into Nq probability values (λi)i∈J1,NqK := ( i
Nq
)i∈J1,NqK, the op-

timal quantiles such that the estimator Ẑ(x, u) minimises the Wasserstein dis-
tanceW1(Z(x, u), Ẑ(x, u)) in the sense of Definition 6.2.3, between the true dis-
tribution Z(x, u) and the estimator Ẑ(x, u), are the quantiles (q̂∗i (x, u))i∈J1,NqK =

(F−1
Z(x,u)(λ̃i))i∈J1,NqK where54 λ̃i := (λ̃i)i∈J1,NqK = (λi−1+λi

2
)i∈J1,Nq−1K. Consequently,an optimal estimator for the Wasserstein distance considered here is given by

Ẑ∗(x, u) = Unif((q∗i (x, u))i∈J1,NqK).Now, the question of the quantile estimation arises. Indeed, minimising theWasserstein distanceW1 amounts to estimating optimal quantiles.
Quantile Regression

Naturally, quantile regression (Koenker 1994; Koenker 2005) is a suitable tech-nique for this purpose: A family of learning tasks is specified as a collection offunctions (ℓλ)λ∈[0,1] where each task is indexed by a probability value λ ∈ [0, 1].
Definition 6.2.5 (Quantile Regression). Quantile regression is defined as the min-imisation of the following collection of learning tasks

ℓλ(Z̄, q) := (Z̄ − q)
(
λ− 1(Z̄<q)

)
=

{
λ|Z̄ − q| if Z̄ ≥ q

(1− λ)|Z̄ − q| if Z̄ < q)
(6.9)

for any quantile level λ ∈ [0, 1] and q ∈ supp(Z̄) where supp(Z̄) is the supportof the random variable Z̄ (the smallest closed set such that the probability of therandom variable Z̄ being outside this set is zero). Fq
−1
Z̄
(λ) is a critical point of ℓλ forany λ ∈ [0, 1], i.e. a global minimum (by convexity).In practice, for a set of Nq quantile levels (λi)i∈J1,NqK, the average task risk forquantile regression is defined as

LQR
(λi)i∈J1,NqK

(
Z̄, (qi)i∈J1,NqK

)
:=

1

Nq

Nq∑
i=1

EPZ̄
[
ℓλi

(
Z̄, qi

)] (6.10)
54Those mid-quantile values recall how the median ( 12 -quantile) is optimal in L1 regression,which is used to define theW1 distance.
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It is important to note that quantile regression exhibits no bias in the gradi-ent estimation discussed above.
No Bias in Gradient Estimation for Quantile Distributions

Importantly, the Wasserstein distance W1 restricted to the space FQR of quan-tile distributions (uniform probability distribution on Nq points) can be min-imised without bias in the gradient estimation. In other words, when the dis-tributions considered are quantile distributions, the Wasserstein distance W1can be minimised indirectly through the unbiased minimisation of the averagequantile regression risk, provided the quantile are well-chosen (mid-points).However, this approach restricts the hypothesis space significantly and noth-ing guarantees that the target distribution belongs to this space.Though, in Reinforcement Learning, the target distribution is unknown andthe temporal difference target is used as a proxy55. Moreover, the crucial pointis to find a fixed point of the Bellman equation. It happens that the distribu-tional Bellman operator from Definition 6.2.1, restricted on FQR is a contractionmapping for a particular metric based onW1, which permits the application ofbasic dynamic programming algorithms.
Consequently, for a fixed collection λ̃ = (λ̃i)i∈J1,NqK of quantile levels, the

estimates q̂Z := (q̂Z,i)i∈J1,NqK of the optimal λ̃-quantiles q∗ := (q∗i )i∈J1,NqK areobtained by minimising the average quantile regression risk LQR
λ where Ẑ ∼Unif((q̂Z,i)i∈J1,NqK).

The next section sets the foundations of the Distributional-RL algorithmused in this work: the Distributional Truncated Quantile Critics algorithm intro-duced in Kuznetsov et al. 2020 for which the core concept is an extension of theSoft Actor-Critic algorithm Dabney et al. 2018 to its distributional version (seealso J. Duan et al. 2022).

6.3 Distributional Soft Actor-Critic
The maximum-entropy principle is a central concept in this thesis and appearsagain in this part of the document. The distributional method used for thiswork is based on a prominent algorithm in the field of Maximum-Entropy Re-inforcement Learning: the Soft Actor-Critic algorithm, which was introducedin Haarnoja, A. Zhou, Abbeel, et al. 2018; Haarnoja, A. Zhou, Hartikainen, et al.2019.

55As mentioned in Bellemare, Dabney, and Munos 2017 and Sutton and Barto 2018: "learn aguess from a guess".
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6.3.1 Soft Actor-Critic
As its name suggests, the Soft Actor-Critic algorithm belongs to the family ofactor-critic algorithms. As discussed in Section 2.2.5, the term “Soft” refers to theentropy regularisation term added to the standard (“hard”) Bellman equation.The optimality equations for the soft-objective have been derived in Ziebart2010. Later a schemaof policy iteration (see Section 3.3.2) that fitswell with func-tion approximation has been proposed by Haarnoja, Tang, et al. 2017 throughthe use of Deep Energy-Based Models (EBMs) for the policy.56
Soft Bellman Equation

Consider the soft objective problem defined in Eq. (3.18)-(3.19) for an infinitehorizon problem and a Markov policy. Then the objectives read
J∗
H (x) = inf

π∈AΠ

E

[
∞∑
i=0

γic (Xi, πi)− αHH [πi (· | Xi)] | X0 = x

]
(6.11)

for the soft value function and
Q∗

H (x, u) = inf
π∈AΠ

E

[
∞∑
i=0

γic (Xi, πi)− αHH [πi (· | Xi)] | X0 = x, U0 = u

]
(6.12)

for the soft Q-function.It can be shown (Haarnoja, Tang, et al. 2017) that an optimal Markov policy
π∗ exists and its conditional probability density is given by
π∗
H (u | x) = exp

(
1

αH
(Q∗

H(x, u)− V ∗
H(x))

)
=

1

Cπ
H(x)

exp

(
1

αH
Q∗

H(x, u)

)
(6.13)

for all (x, u) ∈ X × U with Cπ
H(x) a normalisation constant incorporating thevalue function V ∗

H. Consequently, it is crucial to find the optimal soft Q-function
Q∗

H to derive the optimal policy π∗. When the set of policy Π is Markovian, aDynamic Programming equation can be derived from (6.12) and (6.13). The re-sulting equation is called soft Bellman equation.
Soft Policy Iteration

Then, a policy iteration scheme (see Section 3.3.2) can be employed to itera-tively solve the problem of finding the optimal policy:
56There is an important link between the maximum-entropy principle and the Gibbs distri-bution that is prominent in statistical mechanics (Mézard and Montanari 2009; Mohri, Ros-tamizadeh, and Talwalkar 2018). The only thing that matters here is that the policy is a Gibbsdistribution, i.e. probability measure with density x 7→ 1

CZ
exp(−βE(x)) where CZ is a normal-isation constant.
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• The policy evaluation consists in approximating the soft Q-functionQπ
H fora given policy π. This step is achieved by solving the soft Bellman equationfor the soft Q-function by fixed-point iteration.

• The policy improvement step updates the policy toward its known closedform given in Eq. (6.13) using the soft Q-function obtained in the previousstep by solving
π′
H (· | x) = arg min

π′′∈Π
DKL

(
π′′(· | x)

∥∥∥∥ 1

Cπ
H(x)

exp

(
1

αH
Qπ

H(x, ·)
))

(6.14)
where Cπ

H(x) is the normalisation constant of the distribution π(· | x)which is absorbed by the learning rate of any gradient-based optimisa-tion algorithm. Hence, the resulting policy π′
H gets closer to the familyof policy characterised by such exponential form. This way, this policy isnecessarily closer to the optimal policy π∗

H. Thus, this step improves thepolicy at each iteration.
Soft Actor-Critic

By estimating both a policy and a value function, the Soft Actor-Critic algorithmenters the category of actor-critic methods (see Section 3.3.2). In the sequel,the policy estimator is denoted by π̂H and the soft Q-function estimator by Q̂H.Moreover, it is supposed that two π̂H-dependent data distribution are given,possibly by sampling from the environment or collecting historical data froma simulation. The first distribution Pπ̂H
X is a measure on the state space X and

the second distribution Pπ̂H
X,U,X′,U ′ is a measure on X × U × X × U . This prob-ability measure can be thought as a state occupancy measure and observedtransitions distribution, respectively under the policy π̂H.

• The policy evaluation step solves the soft Bellman equation by minimis-ing the quadratic risk between the soft Q-function and its one-step ahead,forward expression In themaximum-entropy setting, if the policy belongsto the class of energy-based policy given by Eq. (6.13), then the soft Bell-man equation can be rewritten as (the proof is given in Haarnoja, A. Zhou,Abbeel, et al. 2018)
Q∗

H(x, u) = c(x, u)+γ

∫
X×U
Q∗

H (x′, u′)−αH log π (u′ |x′)P(dx′ |x, u)π (u′ |x) du′

(6.15)Consequently, the policy evaluation step consists in the optimisation ofthe quadratic risk defined by
Q̂′

H = argmin
Q̂H∈F

∫
X×U×X×U

(Q̂H(x, u)−Q̃H(x, u, x
′, u′))2Pπ̂H

X,U,X′,U ′ (dx, du, dx
′, du′)

(6.16)
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where F is the hypothesis space of the soft Q-function and the temporaldifference target Q̃H is given by
Q̃H(x, u, x

′, u′) = c(x, u) + γQ̂H (x′, u′)− αH log π (u′ |x′) (6.17)
• Given an estimate of the soft Q-function Q̂H, the policy improvement partupdates the policy by using an estimation of the target policy in Eq. (6.13)and optimising the averaged Kulback-Leibler (KL) divergence between thecurrent policy and the target policy from Eq. (6.14)
π̂′
H (· | x) = arg min

π′′∈Π

∫
X
DKL

(
π′′(· | x)

∥∥∥∥ 1

Cπ
H(x)

exp

(
1

αH
Q̂H(x, ·)

))
Pπ̂H
X (dx)

(6.18)
Since the target function Q̃H depends itself on Q̂H, the minimisation of the riskin Eq. (6.16) can be challenging in practice.57 In statistics, the use of an estimatorto build another estimator such as in Eq. (6.16) is known as bootstrapping.
Parametrisation and Learning

These algorithms have been designed amidst the recent advances in Deep Rein-forcement Learning applied to Robotics where problems are high dimensionaland state and control domains are continuous. Suitable function approxima-tors are thus needed to learn in such environments. In this vein, neural net-works are considered. However, instead of running policy evaluation and pol-icy improvement to convergence, the algorithm alternates between optimisingboth networks with Stochastic Gradient Descent.It should be noted that the need of neural networks is not necessarily clearin the context of flow control where only a few observations are available (thatare considered as states when applying such algorithms).Under those circumstances, the hypothesis spaces are parametrised Fπ =
Θπ and FQ = ΘQ where Θπ and ΘQ are the neural network weights spaces ofthe policy and the soft Q-function, respectively. Consequently, the policy and
the soft Q-function become parametric estimators π̂H = πθπ

H and Q̂H = Q
θQ
H .

6.3.2 Combining Distributional Reinforcement Learning and
Soft Actor-Critic

By adapting the Distributional Bellman operator defined in Eq. (6.4)-(6.5), inits maximum-entropy form described by the soft Bellman equation defined in
57Actually, another approximator of x 7→

∫
U Qπ

H(x, u)π(u | x)du is used in the original SACpaper to stabilise the learning process (see Haarnoja, A. Zhou, Abbeel, et al. 2018, p. 5). How-ever, the SAC formulation given here is identical as the one considered in the TQC paper tobuild their distributional counterpart of SAC. Polyak averaging (Polyak and Juditsky 1992) canbe used to stabilise the learning process.
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Eq. (6.15), which also defines an operator), a maximum entropy version of theDistributional Bellman operator can be defined.
Quantile Temporal-Difference Learning

The distributional approach considered here is based on the quantile regres-sion method presented in Section 6.2.2. The first goal is to estimate the distri-bution Z(x, u) for any (x, u) ∈ X ×U with a quantile distribution Ẑ(x, u) ∈ FQR.This quantile distribution is characterised by a set of quantiles (q̂Z,i(x, u))i∈J1,NqK.Thus, for a fixed state-control pair (x, u) ∈ X × U , an approximation of theminimisation objective (empirical risk) is now given by

L̂QR
(x,u),(λ̃i)i∈J1,NqK

(
(Z̃i)i∈J1,NK, (q̂Z,i)i∈J1,NqK

)
:=

1

NqN

Nq∑
i=1

N∑
j=1

ℓλ̃i

(
Z̃i(x, u), q̂Z,i(x, u)

)
(6.19)where Z̃i(x, u) := c(x, u)+ γẐi(X

′, U ′)−αH log π (U ′ |X ′) for any i ∈ J1, NqK with
X ′ ∼ P(· | x, u) and U ′ ∼ π(· | x). The target (Z̃i(x, u))i∈J1,NK is a collection of
i.i.d. samples generated from an i.i.d. realisation (Ẑ(x, u))i∈J1,NK of the randomtotal cost Ẑ(x, u) ∼ Unif((qẐ,i)i∈J1,NqK). Note that the empirical risk defined inEq. (6.19) is a function of (x, u) ∈ X × U .

In other terms, the conditional distribution Ẑ is first used to generate sam-ples of the random total cost. Then, a temporal difference target distribution
Z̃ is constructed from these samples. The goal is to find new quantiles thatare closer to the temporal difference target distribution. This way, a fixed pointof the distributional Bellman operator is approximated. This method is knownas Quantile Temporal-Difference Learning and has been analysed thoroughly inRowland et al. 2024. This fixed point is a conditional (quantile) distribution.

In practice, the risk L̂QR
(x,u),(λ̃i)i∈J1,NqK

is not minimised for any state-control
pair (x, u) ∈ X ×U , but the average risk over a dataset of state-control pairs isoptimised. The following averaged risk is considered

L̂QR
(λ̃i)i∈J1,NqK

:=

∫
X×Û
LQR

(x,u),(λ̃i)i∈J1,NqK

(
(Z̃i)i∈J1,NK, (q̂Z,i)i∈J1,NqK

)
Pπ̂
X,U (dx, du)

(6.20)Hence, the random total cost approximator Ẑ , being characterised by thequantile estimators (q̂Z,i)i∈J1,NqK, is optimised by minimising the average quan-
tile regression risk L̂QR. In other words, the policy evaluation step is replacedby the quantile regression step and solves

Ẑ ′ ∼ Unif((q̂Z′,i)i∈J1,NqK

)
= argmin

Z′′∈FQR
L̂QR

(λ̃i)i∈J1,NqK

(
(Z̃i)i∈J1,NK, (q̂Z′′,i)i∈J1,NqK

)
(6.21)
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which is equivalent to a minimisation over the quantiles (q̂Z′,i)i∈J1,NqK since thedistribution belongs to the family FQR of quantile distributions (uniform proba-bility distribution on Nq points).
(q̂Z′,i)i∈J1,NqK = argmin

(q̂Z′′,i)i∈J1,NqK

L̂QR
(λ̃i)i∈J1,NqK

(
(Z̃i)i∈J1,NK, (q̂Z′′,i)i∈J1,NqK

) (6.22)

To sum up, ẐH replaces Q̂H and is characterised by the quantile estima-tors q̂Z = (q̂Z,i)i∈J1,NqK, Z̃H replaces Q̃H and is characterised by the temporal
difference target quantile estimators q̃ := (q̃i)i∈J1,NqK = (c(x, u) + γẐH(x

′, u′) −
αH log π (u′ |x′))i∈J1,NqK, and the policy evaluation step is replaced by the quantileregression step where the value is now atomised into quantiles.
Remark 6.3.1. In practice, the quantile regression loss leads to unstable optimisa-tion, and an adaptation of the Huber loss for quantile regression is preferred.
Policy Improvement

The policy improvement step is straightforward. It is performed by policy gra-dient on the estimated Q-function Q̂H obtained from the random total costapproximator ẐH. Indeed, by Proposition 6.2.1, the Q-function is the expecta-tion of the random total cost. But since ẐH ∼ Unif((q̂Z,i)i∈J1,NqK), its expectationis well known and is given by E[ẐH] = Q̂H = 1
Nq

∑Nq

i=1 q̂Z,i.Thus, the policy improvement step of Eq. (6.18) simplifies to

π̂′
H (· | x) = argmin

π′′∈Π

∫
X×U

(
1

Nq

Nq∑
i=1

q̂Z,i(x, u)− αH log π′′ (u |x)

)
Pπ̂H (dx, du)

= argmin
π′′∈Π

∫
X×U

1

Nq

Nq∑
i=1

q̂Z,i(x, u)Pπ̂H (dx, du)−αH

∫
X
H [π′′ (· |x)]Pπ̂H (dx)

(6.23)
The method aims to minimise the Wasserstein distance between the ran-dom total cost Ẑ and its corresponding temporal difference target distribution

Z̃ := c(x, u) + γẐ(x′, u′) − αH log π (u′ |x′) for all (x, u) ∈ X × U , x′ ∼ P(· | x, u)and u′ ∼ π(· |x). This way, a fixed point of the distributional Bellman operatoris approximated.
Parametrisation and Learning

As well as in the non-distributional case, the hypothesis spaces are parame-
terised Fπ̂ = Θπ̂ and FẐ = FQR = Θ

Nq

Ẑ
such that the family of quantile distribu-

tions is the collection of Nq-tuples spaces since (q̂Z,i)i∈J1,NqK = (qθZZ,i)i∈J1,NqK.

129



6.3.3 Complementary Features
The core of the method has been presented in the previous sections. However,being in practice parametrised by neural networks, the learning process can beextremely brittle in practice (Hasselt et al. 2018).
Stabilisation and Variance Reduction

Common features can be added to the algorithm to improve its stability andperformance. The following features are prominent:
• Ensembling: The Q-function or Z-function can be approximated by a setof estimators to reduce the variance.
• Polyak Averaging: The temporal difference target Q̃ or Z̃ can be up-dated using Polyak averaging (Polyak and Juditsky 1992) to improve thebehaviour of the stochastic approximation.
• Huber Loss: The quantile regression loss can be replaced by a smootherHuber loss type to stabilise the learning process Dabney et al. 2018.

Overestimation Correction by Quantile Truncation

A well-known issue for algorithms combining Q-learning and function approxi-mation is the overestimation of the Q-function (Thrun and Schwartz 1999; Has-selt 2010; Fujimoto, Hoof, and Meger 2018).In fact, the distributional RLmethod used in this work called Truncated Quan-tile Critics (TQC) has been designed to address this issue Kuznetsov et al. 2020.By truncating the top ntrunc quantiles of the estimated distribution ẐH ∼ Unif
((q̂Z,i)i∈J1,NqK), to get the truncated distribution Ẑ trunc

H ∼ Unif((q̂Z,i)i∈J1,Nq−ntruncK),the overestimation of the Q-function is reduced. Indeed, truncation allows forarbitrary granular overestimation control by biasing the distribution towardsthe lower quantiles.Finally, TQC implements the three featuresmentioned above: ensembling58,Polyak averaging, and Huber loss in addition to quantile truncation to improvethe stability and performance of the algorithm. In this work, the implementa-tion of TQC from Stable Baselines3 is used Raffin et al. 2021.
The next section presents an application of the TQC algorithm to the controlof a chaotic system. A comparison with the state-of-the-art method is providedto gain insights on the particular features of the TQC algorithm and its potentialfor flow control applications.

58The ensemble is composed of nens of Z-functions, thus nens collections of Nq quantiles.
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6.4 On the sample efficiency of Distributional Re-
inforcement Learning

This work extends the results obtained in Bucci et al. 2019 on the control of theKuramoto-Sivashinksy (KS) partial differential equation with Deep DeterministicPolicy Gradient (DDPG) (Lillicrap et al. 2019). The KS system exhibits chaotic prop-erties and possesses similarities with the Navier-Stokes equations (see Section3.4.3).The performance of other baseline deep RL algorithms for the control ofchaotic systems is the first question addressed in this work. Indeed, Bucci et al.2019 solely usedDDPG to control the KS system. Being an off-policy algorithm, itis prone to instability (Matheron, Sigaud, and Perrin 2020). Moreover, on-policyalgorithms andmaximum-entropy reinforcement learning (Chapter 4)may alsobe suitable for the control of chaotic systems.The performance criterion considered here is the sample efficiency of thealgorithms. Since Distributional Reinforcement Learning (DRL) shows promi-sing results in terms of learning speed and stability (Bellemare, Dabney, andMunos 2017), it is of interest to compare it with the other baseline algorithms.Consequently, the first question addressed in this work is
• How does the sample efficiency of Distributional RL compare to otherbaseline deep RL algorithms for the control of chaotic systems?

The second question is related to the generalisation capability of the learnedpolicies to initial distribution PX0 . Thus, the second question addressed in thiswork is
• How do policies learnt with Distributional RL generalise to out of traininginitial conditions compared to other baseline deep RL algorithms?
The next section presents the experiments performed to gather insightsregarding the previous questions.

6.5 Experiments
In order to answer the questions raised in the previous section, a series of ex-periments are conducted. Basically, they build on the training of deep RL algo-rithms on the Kuramoto-Sivashinsky PDE (see Section 3.4.3).Four standard deep RL algorithms and one instance of deep DistributionalRL are considered in the following experiments. Each of them represents aparticular aspect of the RL literature (On-policy, Off-policy, Maximum Entropy).Concretely, the following algorithms are considered:

• Deep Deterministic Policy Gradient (DDPG), off-policy gradient based al-gorithm (Lillicrap et al. 2019).
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• Trust Region Policy Optimisation (TRPO), on-policy algorithm with a trustregion mechanism to ensure smooth policy updates (Schulman, Levine,et al. 2015).
• Proximal Policy Optimisation (PPO), computationally efficient extensionof TRPO (Schulman, Wolski, et al. 2017).
• Soft Actor-Critic (SAC), a deep learning approach to themaximumentropyversion of the Bellman equation (see Section 6.3).
• Truncated Quantile Critics (TQC), a Distributional Reinforcement Learningextension of SAC, with critic ensembling and value function correction bylarge quantile (extreme values) truncation (see Section 6.3.3).

All the optimisation procedures (a.k.a. training or learning processes) are car-ried out with the default hyperparameters from Stable Baselines3 that often cor-responds to the original paper configuration or benchmark configurations. Fi-nally, each of the algorithms is trained over five i.i.d. runs (random seeds).The first question asked in Section 6.4 is now addressed.
6.5.1 On the sample efficiency of Distributional Reinforce-

ment Learning
In the perspective of answering the first question, training on the KS environ-ment is analysed. Results of the training process are presented in Figure 6.1.The training time unit is given by the number m ∈ N∗ of interactions with theenvironment (which determines the sample complexity). This number also cor-responds to the number of decisions (control input). In the case of this experi-ment, a limited budgetm = 2× 105 is set. The initial distribution PX0 is definedsuch that X0 ∼ N (xe, σ

2
eIddX ), i.e. the initial state is randomly picked in thevicinity of the equilibrium xe = xe∗2

with perturbation noise σe = 10−1. Thecontrolled trajectory length of the KS environment is set toK = 200.Figure 6.1 shows that the training dynamics of TQC minimises the objectivecriterion throughout the training process compared with the other algorithms.The performance spread is significant for TQC against the other algorithms.Otherwise, the best algorithms are instances of on-policy algorithms (TRPO andPPO).
6.5.2 Ablation Study
An ablation study is performed to evaluate the influence some features of par-ticular importance implemented by TQC. The features considered are the criticensemble size, the number of quantiles and the maximum entropy regularisa-tion coefficient. The number of critics is varied from 1 to 2, the number of quan-tiles is equal to 1 or 25 and the entropy regularisation coefficient is set to zero
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Figure 6.1: Training dynamics of the deep RL algorithms on the KS system over 2× 105environment steps. The x-axis is the number of environment steps, and the y-axis isthe objective value.

or a learnable value (which is inherited from the follow-up SAC paper Haarnoja,A. Zhou, Hartikainen, et al. 2019 by the same authors). This ablation study isperformed over 5 independent runs. The results are presented in Figure 6.2.First, the limit casewhen the number of quantiles is set toNq = 1 fails to con-verge. This case amounts to learning the median of the distribution. Second,the critic ensemble size has a slight impact on the performance. Ensemblingseems to have a minor positive impact. Third, when removing the entropy reg-ularisation, the performance is degraded and the training dynamics are lessregular. This suggests that the entropy regularisation adds smoothness to thelearning landscape (Chapter 4 discusses this phenomenon). Thus, the combi-nation of quantile regression and maximum entropy reinforcement learningseems to have the largest impact in this setup of the KS system.
6.5.3 Generalisation to other initial conditions
The second question mentioned in Section 6.4 is now addressed. The gener-alisation capability of the learned policies to out-of-training initial conditions isevaluated. To this end, the algorithm achieving the best performance after TQCin the previous experiment is retained (namely PPO) for a comparison analysis.Recall that the Kuramoto-Sivashinsky system is initialised with a Gaussianperturbation around the equilibrium xe∗2

. The initial distribution PX0 is defined
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Figure 6.2: Ablation study. Comparison of TQC performance for varying sizes of thecritic ensemble and varying number of quantiles Nq with a default learnable entropycoefficient αH
θ (top). Reference performance without entropy regularisation (bottom).The x-axis represents the number of environment steps, and the y-axis is the objectivevalue.
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Figure 6.3: Qualitative comparison of TQC and PPO on other initial condition distribu-tions. Learnt policies are evaluated on twice the environment time horizon (K). Eachheatmap represents the controlled state (y-axis) of the KS system w.r.t to the time (x-axis). Rows: different initial points xe = xe∗i such that X0 ∼ N (xe, σ
2
eId). Columns:TQC, PPO.

such thatX0 ∼ N (xe, σ
2
eId). As stated in Section 3.4.3, the KS partial differentialequation exhibits four equilibria (xe∗i

)i∈J1,4K.59 The training is performed with
xe = xe∗2

, σe = 10−1, and the evaluation presented in Figure 6.3 is performed
with xe ∈

{
xe∗1

, xe∗2
, xe∗3

}with twice the rollout length used for training 2K = 400.Figure 6.4 shows the result for the same setting, but the intensity of the noise(standard deviation) is 10 times higher. In this case, X0 ∼ N (xe, 10σe).Some observations can be extracted from the figures. On one hand, TQCstabilises the dynamics relatively well from any starting xe ∈
{
xe∗1

, xe∗2
, xe∗3

} fora time horizon of 2K , while PPO stabilises only dynamics starting from xe = xe∗2for a rollout length equal toK. On the other hand, TQC is robust to the increaseof noise intensity.Note that quantitative results evaluating the objective function on control-led trajectories fromother initial conditions confirm the qualitative observation.However, those results are kept from the reader, for the sake of brevity.
59Since the state space X for KS is a function space. The equilibria are function of the space

z ∈ [0, LX ] → xe∗i
(z). In practice, those functions are discretised with a finite dimension dX ∈

N+
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Figure 6.4: Qualitative comparison of TQC and PPO on other initial condition distribu-tions. Learnt policies are evaluated on twice the environment time horizon (2K = 400).In this case the noise intensity is set to 10σe > 0, ten times the value used for training.Each heatmap represents the controlled state (y-axis) of the KS systemw.r.t to the time(x-axis). Rows: different initial points xe = xe∗i such that X0 ∼ N (xe, σ
2
eId). Columns:TQC, PPO.
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Figure 6.5: Training dynamics of the deep RL algorithms on the KS system over 2× 106environment steps. The x-axis is the number of environment steps, and the y-axis isthe objective value. Some algorithms do not have training dynamics data after somepoint since all algorithms are allowed the same training clock-time but do not have thesame sample complexity.

6.5.4 Asymptotic performance
This last part investigates the asymptotic performance of the algorithms. Con-sequently, the sample size is increased by a factor of 10 such thatm = 2× 106.Figure 6.5 shows the training dynamics of the deep RL algorithms on the KSsystem overm = 2×106 environment steps. TQC presents impressive learningspeed, but the on-policy algorithms show better performances after roughly
m = 4 × 105 environment steps. Moreover, TQC is roughly four times slowerthan the on-policy algorithms.

6.6 Conclusion
This chapter introduces the Distributional Reinforcement Learning frameworkand its application to the control of chaotic systems. The Kuramoto SivashinskyPDE is used as a benchmark system. The DRL algorithm used is the TruncatedQuantile Critics algorithm, which is an extension of the SAC algorithm. Theperformance of TQC is compared to other baseline deep RL algorithms andshows promising results in terms of sample efficiency. However, the algorithmis computationally slower than all other baseline algorithms.
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Further work includes understanding the reasons behind the performanceof TQC and the application to more complex fluid flows.
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7 Towards Neural Controlled
Delay Differential Equations
for Model Based Control

This chapter presents a project that aims to address particular challenges ofdata driven control with continuous time dynamics modelling. The neural dif-ferential equation framework for continuous time approximation is presentedwith its underlying motivations, then preliminary results are presented and dis-cussed.

7.1 Introduction
This chapter introduces a unified way of addressing, to some extent, at leastthreemain challenges in data-driven control: sampling time robustness, partialobservability, and dynamics delays. These questions will be discussed in thefollowing sections.The underlying idea is originally motivated by the need to model the lag be-tween actuator and sensor signals observed in the Cavity Flow Control problem.It appears that a neural model of the continuous-time control-free dynamicscalled Complementary Deep Reduced Order Model (CD-ROM) (Menier et al. 2023),that aims at reconstructing the full system state dynamics with a history of in-complete observations, was developed within the research group associatedwith this work.In this context, bibliographic research led to three central articles on Model-Based Reinforcement Learning in continuous time that were used to frameand build the present study. The first paper Du, Futoma, and Doshi-Velez 2020models semi-Markov Decision Processes (with random decision times, see Sec-tions3.1.2) with Neural Ordinary Differential Equations (NODE), an actor-critic al-gorithm and optionally Model Predictive Control (MPC). The second one (Yildiz,Heinonen, and Lähdesmäki 2021) addresses the question of robustness to timediscretisation schemes in Reinforcement Learning using a Continuous-Time Re-inforcement Learning (CTRL) approach with NODE. The last paper (S. Holt et al.2023) introduces a learning-based control method for continuous-time delayed
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dynamics, where the authors combine a continuous-timemodel of the dynami-cal system, which is built over the Laplace transform S. I. Holt, Qian, and Schaar2022, with a gradient-based MPC algorithm.Those three articles encompass the challenges aforementioned and pro-vide a solid reference for the development of the present work. The next sec-tion addresses the question of the robustness to time discretisation and irreg-ular sampling times of learning-based control algorithms.Nagabandi et al. 2018; Meng, Gorbet, and Kulić 2021; Bradtke and Duff 1994
7.1.1 Continuous-Time Reinforcement Learning: Temporal

Abstraction
As emphasised in the introduction of this manuscript (Section 1.4.1), the ques-tion of robustness is a significant concern for data-driven flow control. Know-ing already that reinforcement learningmethods are extremely sensitive to thechoice of training hyperparameters, a growing interest regarding the robust-ness of RL methods to time or spatial discretisation schemes has emerged re-cently in the literature (Tallec, Blier, and Ollivier 2019). For instance, Kidger etal. 2020 show that their particular neural ODE model60 is the continuous-timelimit of a Recurrent Neural Network (RNN) that handles irregular time series,in a non-controlled setting. Those developments are motivated by the recentadvances and challenges in the application of learning-based control to real-world systems (Dulac-Arnold, Mankowitz, and Hester 2019). This brings againthe concept of temporal abstraction that was addressed extensively in Chap-ter 5 where a method governing the data sampling times is used to reduce thesample complexity of a model learning procedure.In this chapter, the abstraction is obtained by design through modellingthe continuous-time dynamics of the system to approximate an optimal solu-tion of the continuous-time control problem. This data-driven approach is nowreferred to as Continuous-Time Reinforcement Learning (CTRL) in the literature(Munos and Bourgine 1997; Doya 2000), but it amounts to be a learning-basedapproach to Stochastic Optimal Control defined in Chapter 2.
7.1.2 Partial Observability: Information States
There has been a long history of research work on both the theoretical andpractical aspects of Partially Observed Markov Decision Processes (POMDPs)since the publication of the paper Åström 1965 that laid the theoretical foun-dation of the problem. As in the standard RL literature, at least two mainbranches of research can be identified. First, a theory referred to as “exact”

60This model is also termed as Neural Controlled Differential Equation (NCDE) in that paperbut for another reason (the control in Rough path theory is the signal against which the dynam-ics is integrated).
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relying on Dynamic Programming methods where optimality guarantees areobtained (Sigaud and Buffet 2010, Chapter 7). In general, the exact algorithmsobtained have a large computational complexity with respect to the size of thestate and action spaces due to the complexity of the constructed representa-tions of the system. To counter this, the second branch of research focuses on“approximate” solutions (Cassandra 1998). A concise but complete historicaloverview of the different approaches for exact and approximate planning withPOMDPs is given in Subramanian et al. 2022. The PhD thesis Cassandra 1998and the seventh chapter of the book Sigaud and Buffet 2010 provide a strongpresentation of the question, mainly in the finite state and action space case(exact, tabular case). For a presentation in general state and action spaces,the reader is referred to the book O. Hernández-Lerma 1989. The article Alt,Schultheis, and Koeppl 2020 considers the problem of partial observability incontinuous time.Several approaches encountered in the literature construct an augmentedstate based on the history of observations such that the augmented dynamicsbecome Markovian (Bertsekas 2000). A first important approach is made witha random representation of the state, called the belief state.
Belief State

The belief state approach shares the same idea as the Bayesian approach pre-sented in Section 3.2.3, where a guess of the state is represented by a prob-ability distribution. This also echoes to the relaxed control theory presentedin Section 2.2.5 where the control is a probability distribution over the controlspace (O. Hernández-Lerma 1989). In the PO-MDP case, the belief state is aprobability distribution over the state space which represents the agent’s be-lief about the current state of the system. In fact, the belief state is in general afilter (see Definition 2.2.11) that estimates the state of the system given the his-tory of observations (Andrieu and Doucet 2002). The belief state is updated ateach time step by the observation and the control. Viewing the problem in thespace of belief states, the PO-MDP is transformed into a Markov Decision Pro-cess (MDP) where the state space is the space of belief states. A drawback ofthis approach is the curse of dimensionality, as the belief state is a probabilitydistribution over the state space for which the complexity grows exponentiallywith the dimension of the state space (Sigaud and Buffet 2010).
Information States and Sufficient Statistics

Since the history process constructed from any stochastic process is a Mar-kov process, methods based on Markovian representations such as DynamicProgramming (see Section 2.2.6) can be applied using the history process asaugmented state for a augmented Markov Decision Process (MDP). However,
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this default approach is not efficient because algorithms are carried out over aspace of expanding dimension (Bertsekas 2000).An alternative to the filter (belief state) approach is to consider a determinis-tic transformation of the history process that preserves the information of thesystem. A function φ(Ht) of the random observation historyHt at time t ∈ I (or
ht in the deterministic case, see Section 2.3.2) can be considered. This transfor-mation of the history is called the information state at time t ∈ I . The informa-tion map φ should be viewed as a mapping from the space of maximal-lengthhistory to a space of finite dimension.On the contrary, if the information map was chosen as φ = Id, the informa-tion state would be the history itself (φ(Ht) = Ht). In this case, the dimensionof the information state would increase with time, which is not desirable foralgorithmic applications.Thus, the information state has the property to produce a compressed rep-resentation of the information for which the dimension does not increase w.r.t.time. As mentioned in the previous paragraph, the information conservationproperty defined by the information state is formally defined as φ(Ht) beinga sufficient statistic Barra 1971; M. Hoffman 2015 for the histrory process Ht .In probabilistic terms, the two random variables convey the same informationabout the system.61 Precisely, conditional probabilities given the informationstate are the same as conditional probabilities given the history process.
Takens’ Theorem

Another point of view coming from the theory of dynamical systems is given bythe Takens’ theorem (Takens 1981; Noakes 1991). This theorem states that a de-terministic dynamical system can be reconstructed from scalar-valued partialmeasurements of the system. In other words, a well-chosen information state(see Section 7.1.2) can be used to reconstruct, up to a diffeomorphism (Fejoz2017), the manifold on which the system evolves (thus the geometry is not pre-servedwhile the ergodic statistics are) (Coudène 2013). This result is also knownas the delay embedding theorem because the information state is defined as afinite size rollingwindowof the history process. The size of this window is calledthe embedding dimension and is strictly greater than twice the dimension ofthe system attractor. A stochastic version of the Takens’ theorem is given inBarański, Gutman, and Śpiewak 2020.
61Echoing the notion of information available to the agent or controller (see the footnotesof Section 2.2), a sufficient statistic for a random process Ht is a random variable φ(Ht) thatgenerates the same σ-algebra as the history process. Consequently, conditioning on the infor-mation state φ(Ht) is equivalent to conditioning on the history process Ht. It is sufficient toknow the information state to reconstruct the possible events that can be identified from thehistory process. The advantage of the information state is that it is of fixed dimension and doesnot increase with time.
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7.1.3 Delay in Dynamical Systems
Delayed Dynamical systems can be seen as partially observable systems wherethe observation may be the state of the system at a previous time. In this par-ticular case of imperfect state information Bertsekas 2000, it is natural to con-struct information states based on the history of observations as discussedin one of the seminal papers Kim and Jeong 1987 (see also Bertsekas 2000, p.35). Later on, White III 1988 proves analytically that the observation history im-proves performances. Bander andWhite 1999 shows a sufficient statistic in thepresence of observation delay is a specific belief state. M. Agarwal and Aggar-wal 2021; W. Wang et al. 2024 use the delay information to construct augmentthe state with a delay-aware window of the past history.Some work explicitly constructs MDP from delayed MDP (Altman and Nain1992; Katsikopoulos and Engelbrecht 2003; B. Chen et al. 2021).Walsh et al. 2008 uses a model-based RL approach to handle observationand rewards delays. Lancewicki, Rosenberg, andMansour 2022 is the first studythat considers regret minimisation in the important setting of MDP with de-layed feedbacks. This paper provides bounds and also considers adversariallychanging costs. To go further, Ramstedt et al. 2020 considers random delays inthe observation process.

7.2 Neural ControlledDelayDifferential Equations

7.2.1 Vector Field Parameterisation
Considering a Partially Observed Differential equation as defined in Example2.2.2.62 For such a system, the state dynamics are characterised by the oper-ator f and the observation dynamics by the operator g. Also, a parametrichypothesis space Ff = Θf for the state dynamics and Fg = Θg for the obser-vation dynamics are considered. The term Neural Controlled Delay DifferentialEquations refers here to the deterministic differential equation obtained by pa-rameterising the state and observation dynamics operators by θf ∈ Θf and
θg ∈ Θg, respectively. In general, those parametrised models are neural archi-tectures such as feedforward or convolutional neural networks. This leads tothe following system of equations:

∂txt = fθf (xt, xt−τX , ut) (7.1)
and

∂tyt = gθg (xt, xt−τY , ut) (7.2)
where θf ∈ Θf and θg ∈ Θg and the time delays τX ∈ R+ and τY ∈ R+ are fixedand known. The time interval is finite and given by I = [t0, T ] with T < ∞. A

62The system need not to be necessarily defined on the whole space RdX × RdX × RdU buton any open set of X × X × U , where the equation is well-defined.
143



solution63 of the neural differential equation above is denoted by (xθ
t )t∈I where

θ ∈ Θf for the state and a similar notation is used for the observation.Henceforth, in this work andmore generally in the field of Physics InformedMachine Learning (Karniadakis et al. 2021), neural differential equations are po-sitioned within the domain of system identification (Ljung 1999). Actually, re-cent efforts (Ayed et al. 2019; Rackauckas et al. 2021; Menier et al. 2023; Monselet al. 2024) have been made to apply neural differential models for modellingphysical systems, particularly those of computational fluid dynamics. In thecontrol context, they pertain to the category of model-basedmethods (see Sec-tion 3.3.1).As a matter of fact, it is worth mentioning that the neural differential equa-tion approach was originally designed to approximate and abstract very deepneural networks. The following remark gives details about the origins of themethod.
Remark 7.2.1. During the early days of modern deep learning for computer vision,neural architectures became increasingly deep (Simonyan and Zisserman 2015).However, a degradation problem has been exposed: the model accuracy saturatesand degrades as the network depth increases. To overcome this issue, the ResNetarchitecture was introduced (He et al. 2015). The heart of the ResNet architecture isthe residual block defined as

xt+1 = xt + f̄j,θf (xt) (7.3)
where f̄j,θf is the j-th residual layer (or block of layers) with parameters θf . Givenan input data point x0, the output xT of the ResNet model is obtained by propagat-ing the input through the residual layers together with the remaining layers of thenetwork.On the other hand, when discretising a Markovian and non-controlled versionof the state dynamics given by Eq. (7.1)with an Euler scheme, the following equationis obtained:

xt+1 = xt + δfθf (xt) (7.4)
where δ is the time step of the Euler scheme. If the time step is absorbed by themodel f̄j,θf in Eq. (7.4), the residual block in Eq. (7.3) is recovered. Thus, for aneural differential equation with a fixed time horizon T , the time step of the Eulerscheme controls the depth of the neural network. This way, neural network archi-tectures and vector fields maintain a close relationship. A data point is propagatedthrough the neural network layers in a similar way as a point following the flow de-fined by a vector field. The seminal Neural Ordinary Differential Equation (NODE)model (R. T. Q. Chen et al. 2018) paved the way for this connection.

63The existence of the solution should be guaranteed when the control and the operatorsare continuous w.r.t. time. For a non-continuous control or the uniqueness question, a com-bination of the general version of the Cauchy-Lipschitz theorem (Trélat 2005) with its delaydifferential equation version (Hale 1971) is required.
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The neural differential equation approach was initiated by R. T. Q. Chen etal. 2018. The PhD thesis Kidger 2021 provides a comprehensive manual on thesubject.The neural differential equation approach combines several advantages.First, it benefits from the approximation power of neural networks. Second,it allows for a memory-efficient gradient computation. Third, it benefits fromthe strong theoretical understanding of differential equations.
7.2.2 About Optimisation
Learning Task

The optimisation is described for state dynamics learning but is equivalent forobservation dynamics. The learning task is defined by the L2 distance betweena piece of trajectory (xt)t∈I′ issued from the neural vector field fθf and its cor-responding true trajectory (xt)t∈I′ determined by the target operator f , where
I ′ ⊂ I . Formally, the loss function is defined as

ℓ
(
(xt)t∈I′ , fθf

)
:= ∥(xt)t∈I′ − (x

θf
t )t∈I′∥2L2(I′) =

∫
I′
(xt − x

θf
t )

2dt (7.5)
where ∥ · ∥L2(I′) denotes the L2 norm over the time interval I ′.The learning task being defined, a generalisation error (called risk) needs tobe introduced. To this end, a distribution over pieces of trajectories is consid-ered and denoted by P(xt)t∈I′

.
L
(
P(xt)t∈I′

, fθf
)
:= EP(xt)t∈I′

[
ℓ
(
(xt)t∈I′ , fθf

)] (7.6)
Of course, in practice the distribution P(xt)t∈I′

is unknown. A frequentist esti-mation (see Section 3.2.3) of this distribution is obtained by sampling piecesof trajectories from the true dynamics. These trajectories form a dataset D =
{(xt,i)t∈I′}Ki=1 where K ∈ N∗ is the number of samples. An empirical distribu-
tion P̂(xt)t∈I′

:= 1
K

∑K
i=1 δ(xt,i)t∈I′

is then obtained. Moreover, the integral overtime characterising the L2 metric in Eq. (7.5) is approximated by a Riemannsum (see Remark 2.4.3) with N ∈ N∗ rectangles of width δtk = tk+1 − tk. Theempirical risk is then defined as
L̂
(
P̂(xt)t∈I′

, fθf

)
:=

1

K

N∑
i=1

K∑
k=1

δtk(xk,i − x
θf
k,i)

2 (7.7)
where xk,i denotes the state of the system at time tk ∈ I ′ for any i ∈ J1, KK
and partition (tk)

N
k=0 (more precisely, this sampling and discretisation schemecorresponds to the procedure described in Section 2.3 with the compatibility

condition of Section 2.5). Similarly, the point xθf
k,i ∈ X is the state of the system
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at time tk for the neural vector field fθf . In practice, trajectories are obtainedby numerical integration (specifically delay differential equation solvers if thesystem is not Markovian).
Remark 7.2.2. The optimisation procedure has been explained for the state dy-namics fθf . The same procedure is applied for the observation dynamics gθg . De-pending on the context, whether the state or observation dynamics are learned, theloss function L is defined accordingly. In practice, the observation dynamics arelearned since the state dynamics are unknown. There is no work yet on learningboth the state and observation dynamics simultaneously.

Now, the question of the optimisation of the neural differential equation isaddressed. The optimisation is performed by ordinary gradient descent.
The Adjoint State Method

There exists an elegantway due to R. T. Q. Chen et al. 2018, and extendedby Zhu,Guo, and W. Lin 2021 in the delayed case, for deriving the risk gradient without
the need for the backpropagation∇θfL(P̂(xt)t∈I′

, fθf )with respect to the weights
θf of the neural operator fθf . Indeed, Remark 2.2.12 already discussed how acontrol problem can be seen as a constrained minimisation problem wherethe objective function is the generalisation error and the constraints are thedifferential equations. Expanding this point of view, a Lagrangian formulationof the problem is obtained. This Lagrangian is defined as
L
(
(xt)t∈I′ ,

(
λL
t

)
t∈I′ , θf

)
:= L

(
(xt)t∈I′ , fθf

)
+

∫
I′
λL
t

(
∂txt − fθf (xt, xt−τX , ut)

)
dt

(7.8)Without going too much into details, a dual formulation of this constrainedminimisation problem can be obtained (McNamara et al. 2004; Stephany etal. 2024). The Lagrange multipliers (λL
t )t∈I′ describe trajectories that satisfysome differential equation with terminal condition. Thus, these equations aresolved backwards in time. The variable λL

t for any t ∈ I ′ is called the adjoint
state.64 Finally, the gradient ∇θfL(P̂(xt)t∈I′

, fθf ) is a function of the adjoint statetrajectories and the state trajectories.Additionally, this method can also be obtained from a result in optimal con-trol theory called the Pontryagin Maximum Principle (PMP) (Trélat 2005). In thiscase, the weights θf are considered as another control parameter (u′
t)t∈I′ ≡ θf ,and the adjoint equations arise as a consequence of the PMP.The advantage of this method, which is underlined in R. T. Q. Chen et al.2018, is the non-necessity of storing the trajectory values during the forwardcomputation of the trajectory to compute the objective gradient, while stan-dard backpropagation requires the storage of these values. A drawback is the

64The term adjoint refers to the adjoint operator linked to the dual problem formula-tion (Hiriart-Urruty and Lemarechal 2013).
146



need to solve the adjoint equation, that depends on the backward integrationof the state dynamics. This leads two choices: either storing the state valuesduring the forward computation or recompute them during the backward inte-gration. If the recomputation is chosen, the difference between the backwardand forward integration of the state dynamics induces inaccuracies in the gra-dient computation. An extensive description and comparison with the morestandard backpropagation through solver method is given in Kidger 2021. Thebackpropagation through solver method is introduced in the next section.
Backpropagation through solver

On the other hand, if the numerical solver used to integrate the differentialequation is differentiable (is a composition of differentiable operations), thenany automatic differentiation library can be used to compute the risk gradi-
ent ∇θfL(P̂(xt)t∈I′

, fθf ). This method is called backpropagation through solverand despite being less memory-efficient than the adjoint state method, it ismore stable and faster because of the advances in automatic differentiationlibraries (Bradbury et al. 2018; Ansel et al. 2024) and the exact computation ofthe gradient.

7.3 A Data-Driven Approach to Continuous-Time
Flow Control

A promising data-driven approach in continuous-time data-driven control canbe built on the concepts andmodels presented in the first sections of this chap-ter (Sections 7.1.1-7.1.2-7.1.3) . Surely, the resulting method would be model-based, i.e. leveraging the features carried by the neural differential model toperform reliable control procedures.Here, a reliable control should be understood as an algorithm based on aneural differential model that handlesmost of themain challenges of Flow Con-trol enumerated in the introduction of this manuscript 1. Ideally, the methodcovers all those challenges. Though, the work presented here deals only withone of these issues: the presence of a delay in the state or observation dynam-ics. The other challenges are left for future work.
7.3.1 Programme for aNeural Differential Control Algorithm
As stated in Section 7.1, this project builds principally on two previous studieson learning-based continuous time control.
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Neural Differential Continuous-Time Reinforcement Learning

First, the article Yildiz, Heinonen, and Lähdesmäki 2021 where a model basedcontinuous-time reinforcement learning approach is defined to improve ro-bustness to irregular sampling times. From that work, two essential method-ological steps are retained in order to construct a programme for a reliableneural differential control algorithm. Of course, modelling the system dynam-ics with a neural differential equation is the first step. The second step, whichis more involved, is to solve the Bellman equation with an actor-critic scheme.The resolution of this continuous-time Bellman equation (a.k.a. the DynamicsProgramming Principle (DPP) in continuous time, see Section 2.2.6) is the mostchallenging part of the programme since the formulation of the DPP is notstraightforward for time-delayed systems.65
A Neural Operator for Delayed Systems and Model Predictive Control

Second, the work of S. I. Holt, Qian, and Schaar 2022 treats systems with ob-servation delays and learns offline a neural differential representation of thedynamics to perform model predictive control. The model predictive controlpart is retained here as a way to ensure the quality of the learnt model, with-out caring about actor or critic training. However, this approach is inherentlyless computationally efficient than an actor-critic scheme because it requiressolving an optimisation problem at each decision instant. On the other hand, itmay require less data since no reinforcement learning is involved. Thus, thosetwo approaches are complementary and can be somehow combined to builda reliable control algorithm.
Programme Details

Accordingly, a programme for a neural differential control algorithm can bedefined as follows:
1. Modelling delayed and partially observed systems with a neural control-led delay differential equation.
2. Apply Model Predictive Control with the learnt model.
3. Adopt the continuous-time reinforcement learning approach to learn apolicy and obtain an end-to-end learning-based control algorithm.
Only the first step is treated in this thesis while the two others are left forfuture work. The first item naturally extends previous studies on NDDE (Zhu,Guo, and W. Lin 2021; Monsel et al. 2024; Stephany et al. 2024) by introducing

65Not to mention that there is no Q-learning in continuous time since the state-action Q-function collapses to the state value function (Tallec, Blier, and Ollivier 2019; Wiltzer et al. 2024).
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a exogenous control input to the learning procedure. The last two elements ofthe programme trigger many questions and challenges. For instance, the MPCprocedure needs to be adapted to delayed systems and continuous-time con-trol. Also, the reinforcement learning approach should be adapted to the de-layed and partially observed case while Deep Reinforcement Learning is mostlydesigned for Markov Decision Processes (MDP). Moreover, Neural DifferentialModels exhibit complex training dynamics (Kidger 2021) and the convergenceof the learning algorithm is not guaranteed.
7.3.2 Modelling Delayed and Partially Observed Systems
This part of the thesis is dedicated to the first item of the programme for aneural differential control algorithm (see Section 7.3.1). The construction of aproper neuralmodel for delayed and partially observed systems requires a pro-gressive curriculum of questions that aim to validate the underlying featuresthat are supposed to be captured by the model.
Question and Hypothesis

The following questions are addressed:
• Are the NDDE models (not necessarily controlled) more accurate approx-imators for standard dynamical systems than the classical NODE model?
• Does the information provided by the control input improve the approxi-mation of the controlled dynamics?
• Do the NDDE models handle the delay in the state dynamics better thanthe NODE models?
• How the neural differential models perform against Flow Control sensorssignals?
The first point verifies the claims of the seminal paper Zhu, Guo, and W. Lin2021 that provesNDDE are better approximators thanNODE (in the sense of thequantity of functions that can be approximated). The second aims to validatethe natural hypothesis that the control information improves the approxima-tion of the dynamics. This serves also as a sanity check for the control inputimplementation which is not trivial The third question verifies the hypothesisthat the delay in the state dynamics is better handled by NDDE models thanNODE models. The last question is a first step towards an application in FlowControl.
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7.4 Experiments
In order to answer the questions raised in the previous section, a series of ex-periments are conducted. Basically, they consist in training neural differentialmodels on trajectory data generated by a controlled dynamical system underdifferent configurations (e.g. the time delay value).
7.4.1 Ablation Study
All the optimisation procedures (a.k.a. training or learning processes) are car-ried out with the Adam optimiser (Kingma and Ba 2015). When the system ispartially observed, the learning task is defined on the observation dynamics.Four variants of the Neural Controlled Delay Differential Equation (NCDDE) mo-del are trained in order to marginally extract information on the effect of thecontrol input and the delay in the state dynamics. Typically, this approach iscalled an ablation study in the machine learning community. Concretely, thefollowing models are considered:

• the Neural Ordinary Differential Equation (NODE) model which considersa Markovian systemwithout delay, and no control input in Eq. (7.1) for thestate dynamics or Eq. (7.2) for the observation dynamics.
• the Neural Controlled Differential Equation (NCDE) model which consid-ers a markovian system without delay, and a control input.
• the Neural Delay Differential Equation (NDDE) model which considers anon-markovian system with delay, and no control input.
• the Neural Controlled Delay Differential Equation (NCDDE) model whichconsiders a non-markovian system with delay, and a control input.
In view of answering the above questions by training neural differentialmodels on well-chosen dynamical systems, multiple time series datasets aregenerated from different dynamical systems.Finally, note that the objects and quantity considered here, in particular thedelays, are considered continuous. The value of the dynamics for incompatiblesampling times are estimated by linear interpolation (see Remark 2.4.2).

7.4.2 Time Series Dataset
A sampling procedure is performed to collect a dataset D = ((xt,iut,i)t∈I)

m
i=1 oftime series for every dynamical system configuration. All time series are gen-erated by numerical integration (see Section 2.4) of the differential equationsassociated with the dynamical systems. In practice the elements ofD are finitedimensional vectors of dimension K × (dX + dU) where dX ∈ N∗ is the state
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dimension, dU ∈ N∗ is the control dimension that may result from the discreti-sation of the state spaceX or the control space U (see Section 3.4). The integer
K ∈ N∗ is the number of measurements extracted from a continuous signal.The sampling times (see Section 2.3 and Definition 2.3.3) are equidistant with atime step (inter-decision time) of η ∈ R+. The number of time series samplesis m ∈ N∗. Those trajectories are initialised from a random initial conditiondetermined by a collection of probability distributions (PX0,i)

m
i=1. on the initialconditions of the dynamical system. Indeed, in practice the distribution of the

m-th initial condition depends on the distribution of the previous trajectory.The typical example used both in the literature and this work is when the nextinitial condition is the last state of the previous trajectory. In fact, using thelatter distribution could be a way to ensure the ergodicity (Benoist and Paulin2000; Leroux 2019) of the dataset and the dynamical system.Here, except for the Cavity Flow that is computationally expensive, the num-ber of measurements is K = 200 (regularly spaced in time with a time step of
η = 10−2 that depends on the dynamical system) and the number of trajecto-ries in the dataset D is m = 400. Finally, each of the configurations is trainedover two random seeds. Qualitatively, the variation of the training dynamicsover independent runs are much less important than what can be observed indeep reinforcement learning.The different dynamical systems and their configuration is now presented.
Oscillators with Observation Delays

Two oscillators are considered: the Pendulum (see Section 3.4.4) and the Vander Pol oscillator (see Section 3.4.5). For each environment, m = 400 trajecto-ries are generated. The distribution of the initial point is the standard distribu-tion used throughout the thesis (see Section 5.3.2): PX0,i ∼ N (xe, σ
2
eIdX ) for all

i ∈ J1,mK. Thus, the initial conditions are i.i.d.. The starting equilibrium is thebottom point for the pendulum and the zero point for the Van der Pol oscillator(xe = (0, 0) in both cases). The noise level on the initial condition is σe = 10−1.The control signal66 is generated by a random process (Ut,i)t∈I where Ut,i ∼Unif(U) for all t ∈ I and i ∈ J1,mK.Each environment comes in several configurations with different observa-tion delays τY ∈ {0, 10−2, 10−1}. The observation operator g of the pendulumis the standard trigonometric representation of the angle and angular veloc-ity. The observation operator of the Van der Pol oscillator is the observationshift operator. At time t ∈ I , the observation operator is defined as (by a slightabuse of notation) yt = g(yt−τY ) where g = IddX for the Van der Pol oscillatorand similarly for the pendulum (under the trigonometric representation). Thus,three configurations are considered for each oscillator.
66This choice of control, which inherits from the discrete time approach, has been identifiedas a very bad choice a posteriori. Indeed, it results in a control signal that is nowhere continuousand thus may lead to very inaccurate path approximations within the vector field.
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This choice creates a lag between an action and the observation of its effect.It is suitable for the study of the impact of observation delays on the neural dif-ferential models. A visualisation of inference for all the models on a trajectorydrawn from the dataset is given in Figures 7.2 and 7.3.
Delayed Differential Equation

It also interesting to consider a simple delayed differential equation. The Ma-ckey Glass equation (see Section 3.4.6) is a standard example of this kind ofsystem. Instead of taking observation delays, the system state differential isnow a function of a past state prescribed by a delay τX = 1. The parameters ofthe Mackey-Glass equation are defined given in Section 3.4.6. Hence, no directaction lag should characterise the dynamics but only a feedback effect from apast state at a fixed delay.Two choices of initial conditions are considered. First, PX0,i ∼ N (xe, σ
2
eIdX )with xe ∈ X = R the non-trivial equilibrium point and σe = 10−2. The inter-decision time is η = 10−1. Second, the initial condition for trajectory i ∈ J1,mKis the last state of trajectory i− 1 (deterministic law) with the distribution beingthe same as the previous case for i = 0. This choice corresponds to the ergodichypothesis of the dataset where a long trajectory is considered as a good ap-proximation of the stationary distribution of the dynamical system. Moreover,two choices of action spaces are selected, U = {0} and U = [−10−1, 10−1].Figure 7.5 shows the inference of the models on a trajectory drawn fromthe dataset.

Fluid Flows

The last environments studied are typical 2-dimensional fluid flows that areused in the literature on flow control, namely the Cylinder Flow (see Section3.4.7), the Fluidic Pinball (see Section 3.4.7) and the Cavity Flow (see Section3.4.7). All those systems are driven by the Navier-Stokes equations (Eq. 2.13)but their domain of definition and boundary conditions (geometry) differ tomatch the physical setup of the experiments. Moreover, the control input isembedded in the boundary conditions of the fluid flow to mimic real-worldsetups.Fluid flows are governed by the Navier-Stokes equations. From this equa-tion, a dimensionless67 quantity denoted Re ∈ R∗
+ called the Reynolds num-ber is derived (Candel 1995; Chassaing 2000). Broadly, the Reynolds numbercharacterises the ratio of inertial forces (velocity) to viscous forces in the fluidflow. The higher the Reynolds number, themore turbulent (Lumley andBlossey2003) (thus chaotic and complex), the flow is. Consequently, different Reynoldsnumbers are considered for each fluid flow. For the Cylinder and the Pinball

67Being dimensionless, this number allows for the comparison between the dynamics of dif-ferent fluid flows.
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flows,Re ∈ {50, 90, 105, 120}. This choice is inspired by the route to chaos paperof Deng et al. 2018. For the Cavity flow, Re ∈ {500, 5000, 7500} which is inspiredby the work of Barbagallo, Schmid, and Huerre 2009.Regarding the initial states, independent trajectories are generated from arandom initial condition drawn from the standard normal distribution aroundthe equilibrium flow (called steady-state flow).In the same way as the Mackey-Glass equation, two choices of control mag-nitude are selected. The zero control and U = [−10−2, 10−2].Note that being computationally expensive, the models for the Cavity Floware trained withm = 40.
7.4.3 Results
Approximation Capability

The first question in Section 7.3.2 discusses the expressive power of the delaydifferential equation extension of the neural differential model to learn the dy-namics of the dynamical systems. For this task, it should be enough to focuson the uncontrolled dynamics whether by analysing the environment configu-rations where U = {0} or simply restricting the comparison to the NODE andNDDE models.Despite performing quantitatively better in Figure 7.1, concluding towardsan advantage for NDDE is not really fair since the trajectory data for this ex-periment is perturbed by a control signal which is not intended to be capturedby the two models. In addition, the observation delay introduced should biasthe comparison in favour of the delay-based model. On the other hand, FluidFlows (7.4.2) and the Mackey-Glass equation (7.4.2) are more suitable for thiscomparison as configurations with no control are considered.The uncontrolled version of the Cylinder Flow in Figure 7.6 andmore signifi-cantly the uncontrolled version of the Fluidic Pinball in Figure 7.7 show that foruncontrolled trajectories, the NDDE performs better than the NODE model.Regarding Mackey-Glass (Figure 7.4), the neural model based on ordinarydifferential equations is not able to capture the dynamics of the system whilethe NDDE model is able to approximate the system dynamics when the initialconditions are drawn from the stationary distribution. Here, the performanceis given in the standard learning theory sense specified in Section 7.2.2.Hence, this experiment provides empirical evidence on the approximationpower of neural differential dynamics incorporating time delays. Those twofluid flows are partially observed. Thus, the arguments developed in Section7.1.2 and Section 7.1.2 could justify this performance spread.
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Control Information

The second question mentioned in the list of hypothesis aims at evaluatingthe utility of incorporating the control signal to the neural model in order toapproximate controlled differential equations.Recall that the control injected in the dynamics is open-loop (see Section2.2.1). Consequently, the observation and control signals are independent; theyshare no information68 (then their mutual information is equal to zero, by in-dependence). This point of view notably argues that feedback controls (Defini-tions 2.2.5 and 2.2.10) signals intrinsically add less information than open loopcontrols. This choice ensures that the control signal is not redundant with theobservation signal.Closing this parenthesis on information, the NODE baseline should be com-pared with its NCDE extension on controlled dynamics for judging the impactof the control information on the resulting approximations. Comparing dark(NODE) and light (NCDE) green training and validation curves in Figure 7.1 and,with much less importance, in Figure 7.7, the impact of feeding the controlsignal to the model on the training and validation losses is clearly observed.Additionally, Figures 7.6 and 7.7 show near performances when U = {0}. Inthe case of Mackey-Glass (Figure 7.4), the comparison between the NODE andNCDE models is not relevant since the ordinary differential equation modelsare not able to capture the dynamics of the system, regardless of the choiceof initial conditions. However, considering delayed models, it can be observedthat the NDDE model performs better than the NCDD model in the absenceof control. An inverted behaviour is observed in the presence of control. Thissupports the hypothesis that the controlled models capture the control signalinformation.
Delays

The third line of analysis is devoted to the model performance in the presenceof delays over the dynamics.Figure 7.1 shows that NCDDE, at best, surpasses NCDE in modelling con-trolled dynamics with observation delays (middle and right columns), and atworst, achieves equal performances. However, it is not clear and probably un-likely that this performance is intrinsically due to the proper delay modelling inNDDE dynamics.Indeed, recent results show non-interpretable delay values in general set-tings Monsel et al. 2024. Rather, the observation signal approximation may beimproved by the state augmentation design of NDDE (Zhu shows NDDE canapproximate functions that are not learnable with NODE).
68Again, viewing the information in terms of σ-algebras, this means the σ-algebra generatedby the observation process is independant of the one generated by the control process.

154



However, when the delay is relatively high (top right graph) clearly bothNCDDE and NDDE models outperform the others. In this configuration, theNDDE becomes the second best model despite being agnostic to the controlsignal. This suggests more information is carried by the delay than the controlhere.When looking at the results for the delayed Mackey-Glass equation (Fig-ure 7.4), only the delay-based models are able to capture the dynamics of thesystem, regardless of the choice of initial conditions.Consequently, while DDE achieve better performances inmodelling, the rea-son for such performance is still not understood and more work is expected inthis direction. Definitely, interpretability is a key in the understanding of theneural differential models.
Fluid Flows

The last question deals with the ability of the neural differential models to ap-proximate signals from fluid flow simulations.Especially in the case of the Pinball flow (Figure 3.4.7), the NCDDE modelachieves promising results in the uncontrolled cases. The Cylinder flow signalis also correctly approximated.In general, all models fail to learn the time series where a non-zero controlinput is applied. The first hypothesis behind such a behaviour is the irregularityof the control signal (nowhere continuous) which is transmitted to the observa-tion signal.Investigations show that the control process is not damped from the con-troller to the sensor (causal relationship). Thus, the resulting fields to be learntare very irregular. Another round of experiments with a smoother control sig-nal is planned to confirm this hypothesis.Regarding the Cavity flow, even without control, the observation signal ischaotic and very stiff with high frequencies.Further work is planned to investigate the impact of the control signal onthe observation signal in the fluid flow environments.

7.5 Conclusion
This final part of the thesis presents preliminary results in the domain of contin-uous time learning based control for partially observed and delayed dynamics.The elements presented are part of a larger programme devoted to an au-tonomous learning scheme for fluid flow control. Notably, the Neural Contro-lled Delay Differential Equations model that is introduced achieves promisingresults in the presence of observation delays.The control signal is shown to improve the approximation of the perturbeddynamics. However, the impact of the delay in the state dynamics is not yet
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Figure 7.1: Training dynamics of the neural differential models under several observa-tion delays τY for the Van der Pol and the Pendulum environments. The x-axis rep-resents the training epochs. The y-axis is the empirical training loss L̂. Dashed linesrepresent the empirical validation loss. Rows: Van der Pol (top); Pendulum (bottom).Columns: τY ∈ {0, 10−2, 10−1} (from left to right). Green curves are delay-based mod-els. Blue curves are the baseline models. Lighter tones are their controlled version.
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fully understood. Thus, more investigations should be carried out on the solemodelling part. In particular, understanding the real behaviour of the learnabledelays, reducing the sample complexity.
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(a) τY = 0

(b) τY = 10−1

Figure 7.2: Inference on the training data for the Pendulum environment with differentobservation delays τY . For each case, the last row is the control process.
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(a) Case τY = 0

(b) Case τY = 10−1

Figure 7.3: Inference on the training data for the Vander Pol environmentwith differentobservation delays τY . For each case, the last two rows are the control signal.
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Figure 7.4: Training dynamics of the neural differential models under two control mag-nitudes (U = {0} and U =
[
−10−1, 10−1

]) for the Mackey-Glass environment and twokinds of initial conditions distribution. The x-axis represents the training epochs. They-axis is the empirical training loss L̂. Dashed lines represent the empirical validationloss. Rows: PX0,i ∼ N (xe, σ
2
eIdX ) (top); PX0,i = δXT ,i−1 (bottom) for all i ∈ J1,mK .Green curves are delay-based models. Blue curves are the baseline models. Lightertones are their controlled version.
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(a) Case U = {0}

(b) Case U =
[
−10−1, 10−1

]
Figure 7.5: Inference on the training data for the Mackey-Glass environment with dif-ferent control magnitudes on U . Regarding the U = {0} case (a), the control signal isdisplayed but is not injected in the dynamics. For each case, the last row is the controlprocess. 161



Figure 7.6: Training dynamics of the neural differential models for the Cylinder Flow un-der several Reynolds numbers Re and two control magnitudes. The x-axis representsthe training epochs. The y-axis is the empirical training loss L̂. Dashed lines repre-sent the empirical validation loss. Rows: Re ∈ {50, 90, 105, 120} (from top to bottom).Columns: U = {0} and U =
[
−10−2, 10−2

] from (left to right). Green curves are delay-based models. Blue curves are the baseline models. Lighter tones are their controlledversion.
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Figure 7.7: Training dynamics of the neural differential models for the Fluidic Pinballunder several Reynolds numbers Re and two control magnitudes. The x-axis repre-sents the training epochs. The y-axis is the empirical training loss L̂. Dashed linesrepresent the empirical validation loss. Rows: Re ∈ {50, 90, 105, 120} (from top to bot-tom). Columns: U = {0} and U =
[
−10−2, 10−2

] from (left to right). Green curvesare delay-based models. Blue curves are the baseline models. Lighter tones are theircontrolled version.
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Figure 7.8: Training dynamics of the neural differential models for the Cavity Flow un-der several Reynolds numbers Re and two control magnitudes. The x-axis representsthe training epochs. The y-axis is the empirical training loss L̂. Dashed lines repre-sent the empirical validation loss. Rows: Re ∈ {500, 5000, 7500} (from top to bottom).Columns: U = {0} and U =
[
−10−2, 10−2

] from (left to right). Green curves are delay-based models. Blue curves are the baseline models. Lighter tones are their controlledversion.

164



8 Conclusion

8.1 Addressing the Open Challenges in
Learning based Control for Fluid Flows

The work presented in this thesis addresses a significant part of the open chal-lenges in Learning-based control for fluid flows (see Section 1.4.1).Notably, it develops the following contributions:
• An extended presentation of the connection between the fields of Sto-chastic Control and discrete Markov Decision Process (Chapter 2) leadingto the discrete Dynamic Programming Principle used in ReinforcementLearning (Chapter 3)
• The introduction of temporal abstraction in the learning process comingfrom the distinction between decision time and the physical time (Chap-ter 3, Chapter 5 and Chapter 7)
• The study of the impact of the maximum policy entropy principle on therobustness to noise and the regularisation of the policy distribution (Chap-ter 4)
• An application of a distributional perspective in Reinforcement Learningto chaotic dynamics which increases the learning speed (Chapter 6)
• The modelling of dynamics with state-of-the-art continuous-time neuraldifferential models (Chapter 7)

8.2 Unification of concurrent fields
Furthermore, this work is a step towards the unification of Stochastic Control,Reinforcement Learning, Information Theory and Flow Control (Chapters 2 and3). It aims to provide a modern approach to the control of fluid flows by clarify-ing the potential links between these domains.The thesis also showcases the different point of views (deterministic vs. sto-chastic; discrete vs. continuous) available to perform learning-based control of
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dynamical systems. Incorporating methods from these different perspectivescould lead to more robust and efficient solutions.

8.3 A Multidisciplinary Approach
Moreover, this thesis tries to incorporate the most recent advances in the fieldof Learning-based Control and Machine Learning to enlarge the set of toolsavailable for the control of fluid flows. It borrows ideas and algorithms fromthe robotics-oriented Learning-based Control community69 to address the spe-cific challenges of fluid flows. Additionally, a wide range of domains is covered:Information Theory (Chapters 4 and 5), Statistical Learning (Chapter 4), DelayDifferential Equations (Chapter 7), Optimal Transport (Chapter 6), Control andFluid Dynamics. The thesis aims to provide the necessary framework to com-bine these domains and to propose a modern approach to the control of fluidflows.

8.4 Further Research Directions
The presented work opens several research directions. A broad description ofthose directions is given here. More specific ideas are given at the end of therelated chapters.First, the use of the maximum entropy principle in the context of fluid flowsis a promising approach to increase the robustness to noise of the control poli-cies. As stated in the bibliography, other benefits could be expected from theuse of this principle in the context of fluid flows where the environments aresensitive to small perturbations. Second, the use of Distributional Reinforce-ment Learning to control chaotic dynamics is a novel approach that could be ex-tended to more complex systems. Plus, the distributional nature of the modelcould be used to quantify risk and uncertainty in the context of safety-criticalsystems. Third, the concepts of information-based acquisition functions for ac-tive data selection could be extended to fluid flows to increase the efficiency ofthe learning process. Last, the use of continuous-time neural differential mod-els for the control of fluid flows is a promising approach which could discardthe dependence of the algorithm on the discretisation of the dynamics whileadding temporal abstraction. Moreover, the delay differential equations meth-ods could be improved to learn interpretable delays.Finally, the construction of an algorithm able to combine those featureswould be a significant step towards the control of fluid flows with Learning-based Control. Ideally, the algorithm would combine safe system explorationof a real-world system, together with a careful data selection from a database

69For instance, the use of the maximum entropy principle in Deep Reinforcement Learningand the base paper for Chapter 5 are from resarch groups in robotics.
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in order to learn a model of the system efficiently and derive a robust controlpolicy. With a large enough database, the algorithm should first be able to iden-tify the right model for the system, then learn a policy that is robust to noiseand uncertainty.
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Synthèse en français

Les impératifs environnementaux suscitent un regain d’intérêt pour la recher-che sur le contrôle de l’écoulement des fluides afin de réduire la consommationd’énergie et les émissions dans diverses applications telles que l’aéronautiqueet l’automobile. Les stratégies de contrôle des fluides peuvent optimiser lesystème en temps réel, en tirant parti des mesures des capteurs et des mod-èles physiques. Ces stratégies visent à manipuler le comportement d’un sys-tème pour atteindre un état souhaité (stabilité, performance, consommationd’énergie).Dans le même temps, le développement d’approches de contrôle pilotéespar les données dans des domaines concurrents tels que les jeux et la robo-tique a ouvert de nouvelles perspectives pour le contrôle des fluides.Cependant, l’intégration du contrôle basé sur l’apprentissage en dynamiquedes fluides présente de nombreux défis, notamment en ce qui concerne la ro-bustesse de la stratégie de contrôle, l’efficacité de l’échantillon de l’algorithmed’apprentissage, et la présence de retards de toute nature dans le système.Ainsi, cette thèse vise à étudier et à développer des stratégies de contrôlebasées sur l’apprentissage en tenant compte de ces défis, dans lesquels deuxclasses principales de stratégies de contrôle basées sur les données sont con-sidérées : l’apprentissage par renforcement (RL) et la commande prédictivebasée sur l’apprentissage (LB-MPC). De multiples contributions sont apportéesdans ce contexte.Tout d’abord, un développement étendu sur la connexion entre les domai-nes du contrôle stochastique (temps continu) et du processus de décision deMarkov (temps discret) est fourni pour unifier les deux approches. Le systèmeen tempsdiscret est alors vu commeun systèmeen temps continu échantilloné.Ce point de vue permet de donner un cadre général à l’étude des problèmesde contrôle sur des systèmes dynamiques en temps continu.Deuxièmement, des preuves empiriques sur les propriétés de régularisa-tion de l’algorithmed’apprentissagepar renforcement parmaximumd’entropiesont présentées à travers des concepts d’apprentissage statistique pour mieuxcomprendre la propriété de robustesse de l’approche parmaximumd’entropie.Plus précisément, deuxmesures de complexité sont proposées pour prédire larobustesse de la politique obtenue en fin d’apprentissage. La première quanti-fie la régularité du réseau de neurones caractérisant la politique en majorant
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la constante de Lipschitz du modèle neuronal. La seconde évalue la régularitélocale du paysage d’optimisation autour des paramètres de la politique en finde procédure d’optimisation, à l’aide d’une statistique basée sur l’informationde Fisher de la politique.Troisièmement, la notion d’abstraction temporelle est utilisée pour améli-orer l’efficacité de l’échantillonnage d’un algorithme de commande prédictivepar modèle basé sur l’apprentissage et piloté par une règle d’échantillonnagede la théorie de l’information. De manière plus précise, une fonction d’acquisi-tion de donnée basée sur l’informationmutuelle est étendue au cas où le tempsd’inter-échantillonnage devient aussi une variable de décision. L’introductionde cette variable de décision permet d’augmenter la quantité d’information ac-quise par la procédure d’échantillonnage, ce qui améliore la performance del’algorithme de commande prédictive basé sur l’apprentissage.Enfin, les modèles différentiels neuronaux sont introduits à travers le con-cept d’équations différentielles neuronales à retard pour modéliser des sys-tèmes à temps continu avec des retards pour des applications en commandeprédictive. Les modèles neuronaux à retard montrent de meilleures perfor-mances de regression face aux modèles témoins.Les différentes études sont développées à l’aide de simulations numériquesappliquées à des systèmes minimalistes issus des théories des systèmes dy-namiques et du contrôle afin d’illustrer les résultats théoriques. Les expéri-ences de la dernière partie sont également menées sur des simulations d’écou-lement de fluides en 2D.
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