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Dynamical Systems

— Termed by Poincaré in “Les méthodes nouvelles de la mécanique céleste” (1892)

Definition
System + time-evolution law

Examples of fields

Fluids dynamics Financial markets Games Chemistry Astronomy Epidemiology Autonomous Driving

Natural Language Processing
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(Optimal) Control

— Optimal control emerged post-WWII from automatic control needs in flight systems.

Control
Force the system initial state — final state

Optimal Control
Control + optimise a criterion .J

Control Policy 7T
Behaviour of the control input

Other Examples

J = min[Cash]|, min[Time], min[Energy|, min[Unemployment], max[Score]

federal Funds Rate Percent

Optimal Control of
Monetary Policy

J. L. Yellen

1 “Perspectives on
Monetary Policy”
Boston Economic Club
(2012)

Application in Fluids Dynamics
J = max][Lift], min[Drag], min[Noise]
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Fluidic Pinball under control laws - Credits: E. Kaiser


https://docs.google.com/file/d/1zqb8epFV_JXZ_c3rvbhQygmN9GIUsLaD/preview

Physical Model-based vs. Learning-based Control
Physical Model

Explicit system representation (e.g. equation) — Build control policy 77

Example (Navier-Stokes equation in Fluids Dynamics) — f}_‘; (u-V)u=-Vp+ éAu,
V-u=0.
Learning-based Model

Implicit system representation from data and statistics— Build control policy 77

Experiments Data Snapshots Data Matrix
Numerical in Time

“ State Measurements Da‘ta Collection N System interaction
|| |
Laboratory g —-> X-= |:X[l x|2 %54 xm|—l:|
_D

Data-driven methods — Machine Learning Control

Historical

Data can be collected from a number of differents sources
J.N. Kutz et al. - Dynamic Mode Decomposition: Data Driven Modeling Of Complex Systems, SIAM (2016)



Dynamical Systems Control: Challenges

Optimal Control Problem Example
Dynamics f — Navier-Stokes equation
O (t) = f(a(t), ult)) Energy cost —  ¢(x,u) = [|z]|* + [[u]®

Goal T
min,.J (u) :/0 c(x(t), u(t))dt

Challenges’

e Robustness

Cylinder flow drag reduction. Partial observation through sensors. lllustration from %,

e Sample complexity

e Partial observability (PO) and delays

e Controllability PhD thesis Goal

e High dimensional state space e Addressing the challenges

o Very large degrees of freedom e Combine concepts from different fields

(e.g. sensors & actuators config.)

1J.Viquerat et al. "A review on deep reinforcement learning for fluid mechanics: An update", AIP Publishing (2022)
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Maximum Entropy: Noise Robustness




Entropy = Uncertainty Measure

How to quantify the uncertainty on the control law 71 ?

x TMM: low entropy
m,: high entropy

du — Infinitesimal volume (a.k.a. event) of

Uncertainty on du

I(du) = log <#u)>
Entropy (average uncertainty)

H(m) = /R log (7T (Cllu)) (du)

Gaussian case
m(du) = far(ux)(u) du

H(r) = 5 log (2me S




Robustnhess: Maximum Entropy and Regularity

Maximum Entropy Reinforcement Learning

arg min E™ 27 ¢ ( Xk, Ur) — aH[r(du | Xk : > 0.
T k=0
Previous Results! \ \
e Better exploration Control objective Entropy

e Robustness
e Lossregularisation

Questions
Why does entropy improve robustness?
Why does entropy regularise the optimisation landscape?

Hypothesis

Entropy — Policy complexity

IA. Ahmed et al. "Understanding Flat Minima in Neural Networks", ICLR (2019)



Robusthess Measure ﬂ e~ 0o noise)

” er > 0 (noisy obs)

Noisy Observable /" /
Xi1 = F (X, Up) /| ¢
Vi1 = G (X)) + e e ~N(0,021 TAY / | \A
k1 (Xk) +er ek (0,0714) / \f M\\/\ ] J\f\/
— Feedback observation policy 7L y = W(Yk+1, dU) Noisy observation of the 1st coordinate of the Lorenz system

Rate of Excess Risk Under Noise!

e=0—P7
E%O—)Pﬂ-’g J7T76 S J’/T

R" =
ZW (X, Uk) J7

= E™

— How much the objective function deteriorates when € Z 0

Hypothesis

e/ — JTE S
a>0 — R™ \,

1R. Hosseinkhan-Boucher et al. "Evidence on the Regularisation Properties of Maximum-Entropy Reinforcement Learning", Optimization and Learning Conference (2024)



Robustness Measure: Experiments

Lorenz

60 M ¢ ‘
Experiment '
e Train 10 seeds x 5 entropy levels «
— a=0.0 Rﬂ’a ! %[ [

— a=0.02 204

10 4 Oé
- 0.0
= 0.0001

0

" 3 0.001
Training time 0.05 N 0.01
Kuramoto—Sivashlnsky mE 0.02

e Testoverditterent noise intensities €

Results
. Rﬂ'a 1.00
c /0 — JTC N * I*

a>0 — RT N\, ;H




Model Regularity

Complexity Measure!

M:mell =Ry

M (m) measures the model complexity

Robustness Measure
R™ < Bound(M(m))

Question

Model complexity M(m)

m(x)

Which complexity measures characterise robustness to noise?

!B. Neyshabur et al. “Exploring Generalization in Deep Learning", NIPS (2017)
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Complexity Measure: Lipschitz Upper Bound

Policy — mg(-|z) ~ Ng, (po(x), 05, 1a,)

Neural Network — g () = (07060;0...00100) (x)

Lipshitz Bound
l l /’—\\ —— Low Lipschitz: L = 6.3
LIpS NG < H L|ps H _ H ”92” / \ High Lipschitz: L =~ 62.8
1=1 _1 1=1 _“9 “ 1=1 // \\
Lipshitz-based Complexity Measure \\ //
‘\__./
Comparison of Lipshitz constant for a trigonometric class of functions
M(mg) = H 16:

13



Complexity Measure: Lipschitz Upper Bound

Results

a>0 — M(rg)\y
(Up to a threshold for KS)

«

R™ and M(my) have similar trend

Lipshitz-based Complexity Measure

l
M(mg) = M(pg) = [ [ 116:]
1=1
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Contributions and Perspective

Contributions

e Robustness Metric: Excess Risk Under Noise
e Complexity Measure: Model Regularity
e Complexity Measure: Optim. Landscape

Results

Entropy — Robustness to noise
Entropy — Regularity

S

eck for
updates

Evidence on the Regularisation
Properties of Maximum-Entropy
Reinforcement Learning

Rémy Hosseinkhan Boucher'2®)@, Onofrio Semeraro'@®,

and Lionel Mathelin'+?

! Université Paris-Saclay, Orsay, France
{onofrio.semeraro,lionel.mathelin}@upsaclay.fr
2 CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay, France
remy .hosseinkhan@Qupsaclay.fr

Abstract. The generalisation and robustness properties of policies
learnt through Maximum-Entropy Reinforcement Learning are investi-
gated on chaotic dynamical systems with Gaussian noise on the observ-
able. First, the robustness under noise contamination of the agent’s
observation of entropy regularised policies is observed. Second, notions
of statistical learning theory, such as complexity measures on the learnt
model, are borrowed to explain and predict the phenomenon. Results
show the existence of a relationship between entropy-regularised policy
optimisation and robustness to noise, which can be described by the
chosen complexity measures.

Optimization and Learning: 7th International Conference, Revised Selected Papers (2024)

Perspectives
Mathematical analysis (theoretical Deep Reinforcement Learning)
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Learning-Based Control: Sampling Strategies
with Semi-Markov Decision Process




Model-based Control: Gaussian Process Modelling*

Controlled Markov Chain

P™ (dzoduodxiduy . .. der) = Px, (dzg) 7 (20, dug) P (dxy | o, uo)
m(xy | duy) -7 (xp_1 | dup—1) P (dar | xp—1,u1—1)

Transition Kernel P =
(r,u) € X xU — P (dz'|z,u) Probabilityonthenextstate z

() / \
\ e (wj)

Learning Dynamics with Gaussian (Spatial) Process?

7517( " (:IZ,U)) ~N (:u(x,u)a E(m,u),(m,u) | D) /
~ ‘/Xk+1 = F(Xy) +

Supp(Px,,,) ~

1C. E. Rasmussen et al. "Gaussian Processes in Reinforcement Learning", NIPS (2003)



Learning-based Model Predictive Control

Model Predictive Control®

T™MPC(z) = ug

KMPC
sit. (ug, ..., Upupc) = argmin E(¥0; s UgmpC) E c(Xp,ur) | Xo =2
(U0, ey U e MPC) k=0

st. Xpg1~ 751) (Xk, uk)

Problem (Model Learning)

Fixed sampling budget — n "
Learn Pp ~ P

D, = {(x0,u0,21) 5.+, (Tn—1,Un—1,Tn)}

Question

Which online sampling strategy?

1L. Grune, J. Pannek - Nonlinear Model Predictive Control, Springer (2011)



Entropy Map

How to quantify the uncertainty on X,

Infinitesimal volume element of X — dx

Uncertainty on dx
Entropy (average uncertainty)

H(]P’Xk+1 f]R log Px o (dx) PXk+1 (dCL')

Gaussian case
]P)Xk_H (d.’E) - fN(/J,,Z) (w)dw
H(Px,,,) = 3log (2meY)

Po -

~ ?
Px,. .

(@, u))

Entropy map

—-1.00 —-0.75 —0.50 —0.25 0.00 025 050 0.75 1.00
i

Red dots are observation contained in Dy,

~N ('u(:c,u)a Z(:z,u),(:z,u) | D) 19



Expected Information Gain*

Dataset Construction (Sampling)
How to select the next data point (z,u) ?
Dn—i—l = Dn U (flf, u, Xn+l)

Process trajectory —  Hp = (X, Up,...,Ur, X7)
Optimal trajectory under Pp — ]EIEF
Expected Information Gain (EIG) on the Optimal Trajectory?
EIG(z,u) = H[H} | Dy]—Ep, H[[T; | Dy Xy = 2, Uy, = u,XnHJ]}

Dn+1

n+11Pn, Xn=z,Un=u |:

By symmetry — Uncertaintyon X,
EIGn(z,u) = H [Xat1 | Duy Xn = 2, Un = ul—Bp,, - [7{[Xn+1 | Dy, Xy = 2, Uy = u, H;]]

1D. V. Lindley “On a measure of the Information Provided by an Experiment”, Chapel Hill and Berkley meetings of the Institute of Mathematical Statistics (1955)
2y, Mehta et al. "An Experimental Design Perspective on Model-Based Reinforcement Learning", ICLR (2022)
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Decision Epochs: Temporal Abstraction with Options*

Question

Data D,, = {(xg,up), ..., (Tn,uy,)} iscollected online along the dynamics

Which online sampling strategy?
Lorenz x3 autocorrelation from Xo: (Corr(Xo, X«))ke n

. 1.00 ‘ Control intensity
Hypothesis 075 M ==
Exploit the auto-correlation of (X, 1, U,1) from D, 0.50 2

< | ( |

s 025 + M | "

; E A Ty :
Temporal Abstraction § oo M | | \ﬂM \
Irregular (Optional) Decision Epochs —  (;) ;en -0.25 | /
Semi-Markov Decision Process — (X, )jeN —0.50
Interdecisiondelay — 7 €T -0.75
0 100 200 300 400 500

Constant control during = 7— Iteration index k (with dt=0.05)

New control space — 1y x T

21
1R. S. Sutton et al. "Between MDPs and semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning", NIPS (1999)



Semi-Markov Expected Information Gain

New criterion?
EIGNeW(éB, (u,T)) = H [Xnn—i-'r—i-l | ’Dn, an_i_,r =, U,;n_}_T = u, /ﬂn]

! / _IEPH;Wn[,H [X/sn+r+1 | Dy, Xpptr =, Ug,y + = u, f{’jl:a ’in]]

Query the interdecision time to maximise information!

Evolution of EIG, over the sampling iterations n Evolution of EIG, over the sampling iterations n

Max delay Tmax

o

Max delay Tmax

wu
s

w

Y
© AN P

Expected Information Gain EIG,
w

Expected Information Gain EIG,
w

2

2
1

1
0

0 20 40 60 80 100 0 50 100 150 200
Sampling iteration n Sampling iteration n

Results

Temporal Abstraction — Information Gain

IR. Hosseinkhan-Boucher et al. "Increasing Information for Model Predictive Control with Semi-Markov Decision Processes", L4DC (2024)



Contributions and Perspectives

Proceedings of Machine Learning Research vol 242:1400-1414, 2024 6th Annual Conference on Learning for Dynamics and Control

Contributions

Increasing Information for Model Predictive Control with

e Temporal Abstraction (Options framework) Semi-Markov Decision Processes
[ J EXtenSion Of Info rm ation—based acq u |Sit|0n fu nct. Rémy Hosseinkhan-Boucher” REMY.HOSSEINKHAN @ UNIVERSITE-PARIS-SACLAY.FR

Stella Douka® DOUKA.STYLIANI@UNIVERSITE-PARIS-SACLAY.FR
Onofrio Semeraro ONOFRIO.SEMERARO @ UNIVERSITE-PARIS-SACLAY.FR
Lionel Mathelin LIONEL.MATHELIN @LISN.UPSACLAY.FR

Université Paris-Saclay, Orsay, France
CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, Orsay,

Results

Editors: A. Abate, M. Cannon K. Margellos, A. Papachristodoulou

Temporal Abstraction + EIG — Information gain Abstract
r
I n fo rm ati on ga i n — CO n t rol pe rfo rmances Recent works in Learning-Based Model Predictive Control of dynamical systems show impressive

sample complexity performances using criteria from Information Theory to accelerate the learning
procedure. However, the sequential exploration opportunities are limited by the system local state,
restraining the amount of information of the observations from the current exploration trajectory.
This article resolves this limitation by introducing temporal abstraction through the framework of
Semi-Markov Decision Processes. The framework increases the total information of the gathered
data for a fixed sampling budget, thus reducing the sample complexity.

Keywords: Expected Information Gain; Temporal Abstraction: Sample Complexity

Perspectives
Mathematical analysis (theoretical Gaussian Process MPC)

Proceedings of the 6th Annual Learning for Dynamics & Control Conference, PMLR (2024)
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Towards Neural Controlled Delay Differential
Equations for Model Based Control




Learning Model-based Continuous-time Control*

Model Learning  9,z2(¢t) = f(z(t), u(t))

Neural net. f

Advantages
e Temporal abstraction
e Irregularly sampled data— Robustness
e Model-based — Sample efficient

Limitations
e No partially-observed system

Oy (t) = g(x(t), u(t))

e Nodelay handling
x(t) = f(arult))

zy 2 [0,7] > X s+ z(t —s) 7>0

1C.Yildiz et al. “Continuous-Time Model-Based Reinforcement Learning”, ICML (2021)

x(t)

1.00 4

0.75 A

0.50 -

0.25 A

0.00 -

—0.25 A

—0.50 -

—0.75 A

—1.00 A

- Ou(t) = fola(t), u(t))

feo

Illustration: Delay Differential Equation and Historical Trajectory

ax(t) = f(xe, u(t))

—_— x(t)

® x(t)

® x(t—71)
Xe(s)

10

12
25



Learning Model-based Continuous-time Control*

Model Learning  9,x(t) = f(x(t), u(t)) - Ow(t) = folz(t),u(t) €O
Neuralnet. f,

Advantages
e Temporal abstraction
e Irregularly sampled data— Robustness
e Model-based — Sample efficient

Limitations
e No partially-observed system

oy(t) = g(x(t), u(t))

e Nodelay handling \

De(t) = f(wr,ult)) -

2 [0,7] > X sea(t—s) T3>0 Dynamic Programming — Difficult

Not Markovian

26
1C.Yildiz et al. “Continuous-Time Model-Based Reinforcement Learning”, ICML (2021)



Delays and Partial Observability: Embedding

Solution — Markov Property in Larger Space

Hyp1 = (Hy, Yigr, Upp1) — Always Markov but increasing dimension

Information Statel’z Lorenz Attractor Takens Reconstructed Space
Iiv1 = &Ly, Yigr, Upgr)
P(-| H) =P(-|I;) — Sufficientinformation

Takens theorem?

Theorem 1. Let M be a compact manifold of dimension m. For pairs (©,y), ¥:M ~ M

a smooth diffeomorphism and y:M = R a smooth function, it is a generic property that

the map Q( y):M - IR2m+l. defined by
2m (@' (), 2*(t), 2°(t)) (! (t), &' (t —7), &' (t — 27))
45«0 y)(X) = (y(x), y(@(x)), - - +» ylo(x) ? ’ ’ ’
is an embedding; by "smooth” we mean at least c?. / 3 plongement (bijection) \
- - - . -, Phase space - Delayed observables
0. Sigaud et al. - Processus décisionnels de Markov en intelligence artificielle, Lavoisier (2008)
2). Subramanian et al. “Approximate Information State for Approximate Planning and Reinforcement Learning in Partially Observed Systems”, JMLR (2022) 27

3F. Takens “Detecting Strange Attractors in Turbulence”, Dynamical Systems and Turbulence, Proceeding of a Warwick Symposium (1981)



Learning Neural Delay Differential Equations (NDDE)

—  implicit Information State

Delay Differential Equations (DDE)*
Oy(t) = g(ys,u(t)) with y: [0,7] =V, wi(s) =yt —s) -

Particular Case

Ay(t) = g(y(t), y(t — 7),u(t))

Method — Neural Delay Differential Equations®®
dy(t) = go(y(t),y(t —7),u(t)) 0c© 7Ry (7islearnable)

Optimisation — backpropagation through DDE solver

1J. K. Hale - Functional Differential Equations, Springer (1971)
2Q. Zhu et al. “Neural Delay Differential Equation”, ICLR (2021)
3T. Monsel et al. “Time and State Dependent Neural Delay Differential Equations”, PMLR - ECAl Workshop (2024)

0.00 4
-0.25 \
A
~0.50 \
t)
-0.75

lllustration: Delay Differential Equation and Historical Trajectory

1.00 —
= ° xt

0.75 1| 9ex(t) = f(xe, u(t)) o =T

0.50 4 xe(s)

0.25 xX 1)

2 0 2 4“ 10 12
t
1-\: I
i 0-/ o
—1ie ol -11¢ .
0 t 1 0 t 1

Figure 2: (Right) Two continuous trajectories gen-
erated by the DDEs are intersected, mapping -1
(resp., 1) to 1 (resp., -1), while (Left) the ODEs
cannot represent such mapping.
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Learning NDDE: Ablation Study

Experiment System: Van der Pol Oscillator
Compare 4 neural architectures ot (1) = 22(t) + u (1)
NODE -  ay(t) = g, (y(t)) 01°(t) = evoe (1 = (1 (0)2)a(1) — (1) + (1)
—  Ow(t) = go(y(t), ult)) y(t) = a(t —7)
NDDE —  dwy(t) = go(y(t),y(t — 7)) Collect dataset of trajectories (y;)ser
NCDDE —  dw(t) = go(y(t),y(t — 1), ult)) with noisy control (1)

and 7 € {0,0.1}

Generate predictive data (time series) —  (¥; )ter

Compare 4 neural architectures —
(We)ter — (Y Dter

L2

Minimiseover /) ¢ © — £ — E'@oier

Hypothesis
u(t)-dependant models — £
y(t — 7)dependant models fit better — £

29



Learning NDDE: Ablation Study - Results

Env = Van der Pol — 7 = 0.0 Env = Van der Pol — 7 = 0.1

Model
NODE —  dw(t) = g0 (y(t)) L :ESEE
—  Ow(t) = go(y(t), u(t)) L i
NDDE — aty(t) =90 (y(t)v y(t - T)) Metric
NCDDE —  dw(®) = gs(y(t),y(t —7), u(1)) —_

Results T=0 >0

u(t)-dependant models — £
y(t — 7)-dependant models fit better — £
y(t — 7)-dependant models also improve when 7 =0

Drawback
Increased computational complexity 30



Contributions and Perspectives

Contributions

e Functional Differential Equation framework in Continuous-time model-based control
e Links with Information States and Dynamical Systems theory
e Controlled Neural Differential Equations

Results
Delay Differential Equation — Better regression performances

Perspectives

Continuous-time Dynamic Programming in Infinite Dimensional Spaces?

31



Academic and Scientific Involvement




Academic and Scientific Involvement

Internship supervision _’;

e Information-driven learning-based MPC (with S. Douka)
e Learning-based Functional Dynamic Programming (with E. Pradeleix)

Teaching E Reviews E
e (C++(Université Paris-Saclay) e Transaction in Automatic and Control
e Data Science Project (CentraleSupélec) e Journal of Fluid Mechanics
e Advanced Deep Learning (ENS Paris-Saclay MVA) e Furopean Workshop in Reinforcement Learning

Contribution in open-source packages &Y
e control dde (withT. Monsel)

e stable baselines3
e hydrogym
°

torchdde
33



General Conclusion

‘ Interdisciplinary Research

‘ Contribution to Learning-based Control Challenges

‘ Brings concepts from various fields and a novel viewpoint

34
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Learning-based Control of Dynamical Systems:
Challenges




Complexity Measure: Conditional Fisher Information

Hessian and Fisher Information

T
Objective Hessian — ngﬂe = [E™ Z C(Xh, Uh) (Vg logﬂ'g(Ui | Xj)Vg logﬂ'g(Uj | Xj)T + ng llog mo(U; A\'_,, 1\)
hyi,j=0
Fisher Information —  Z(8) = —EX~~U~mCIX) G2 100 7, (17| X)]

Fisher Information Complexity Measure

Lorenz
0.005

M(?Te) Ty (EXpre,UNTre(-IX) [Y‘gu log (U | X i})

0.004

0.003

& Il 0.0
ReSUItS 8 0.002 [ 0.0001
. . L. . 0.001
a =0 — Right Leptokurtic distribution == 001
0.001 I 0.02

a >0 — Relatively less extreme values

0.000 - — >
1000 1500 2000 2500 3000

; 37
Density of M(mg(-|X)) = — Tr (]EUW('\X) [T;‘M log (U] X )D where X ~p



Objective Function and Inter-decision time

. " " :
Evelufiomof J= puverthessampling ftertions; A Evolution of T, over the sampling iterations n

1e5

=275 Max delay Tmax 8 N _ | | Maxdelay Tmax
g ‘ “"wuﬂi' i, ’ VV‘ “ M'“ ‘”\U“ !‘ \‘\ L
= 2.50 e \ \‘ I ‘hl' A ‘, “ ‘\V‘ Ty S
§ : \n|| 0| M '\‘ JH\ ) H‘ | b 4
L 225 g6
o =
>
£ 2.00 5
O v g
fe] (W] ! |
o 175 e \ IRy My | U |
5 s ‘ A B
T Ao A R A
= WV AT A MV ff MAM
3 1.25 r' mhk“n ‘}IMAM lh

1.00 0

0 50 100 150 200 0 50 100 150 200
Sampling iteration n Sampling iteration n
Results

Temporal Abstraction — Information Gain — Control performances
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Placeholder

Placeholder

Placeholder

1C. E. Rasmussen et al. "Gaussian Processes in Reinforcement Learning" NIPS (2003)
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