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Dynamical Systems

System     +     time-evolution law
Definition

 ⟶  Termed by Poincaré in “Les méthodes nouvelles de la mécanique céleste” (1892)

Examples of fields
Fluids dynamics   Financial markets   Games   Chemistry   Astronomy   Epidemiology   Autonomous Driving  
Natural Language Processing

CAC40 Index between 1993 and 2007
I. Kharroubi - Gestion de Portefeuilles (2015)

Motion of a particle in the Bunimovich billiard
Credits: George Datseris, Wikipedia (2019)

Von Kármán vortex street generated by an island in Japan
Taira et al. “Modal Analysis of Fluid Flows: Applications and 
Outlook”, AIAA Journal (2019) 2



(Optimal) Control

Fluidic Pinball under control laws - Credits: E. Kaiser

Application in Fluids Dynamics

Other Examples

Optimal Control of 
Monetary Policy

J. L. Yellen  
“Perspectives on 
Monetary Policy” 
Boston Economic Club 
(2012)
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Force the system       initial state ⟶ final state

Control + optimise a criterion  

Control

Optimal Control

Control Policy
Behaviour of the control input

 ⟶  Optimal control emerged post-WWII from automatic control needs in flight systems.

https://docs.google.com/file/d/1zqb8epFV_JXZ_c3rvbhQygmN9GIUsLaD/preview


Physical Model-based vs. Learning-based Control

Example (Navier-Stokes equation in Fluids Dynamics)        ⟶

Physical Model
 Explicit system representation (e.g. equation) ⟶ Build control policy

Data collection ⟶ system interaction

Learning-based Model 
 Implicit system representation from data and statistics⟶ Build control policy

Data-driven methods ⟶ Machine Learning Control

Data can be collected from a number of differents sources
J. N. Kutz et al. - Dynamic Mode Decomposition: Data Driven Modeling Of Complex Systems, SIAM (2016) 4



1J. Viquerat et al. "A review on deep reinforcement learning for fluid mechanics: An update", AIP Publishing (2022)

● Robustness
● Sample complexity
● Partial observability (PO) and delays
● Controllability
● High dimensional state space
● Very large degrees of freedom

(e.g. sensors & actuators config.)

Challenges1

Dynamical Systems Control: Challenges

Cylinder flow drag reduction. Partial observation through sensors. Illustration from 1.

Example
    ⟶  Navier-Stokes equation
Energy cost  ⟶ 

PhD thesis Goal
● Addressing the challenges
● Combine concepts from different fields

Optimal Control Problem

Goal

Dynamics
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➔ Maximum Entropy: Noise Robustness

➔ Sampling Strategies with Semi-Markov Decision Process

➔ Towards Neural Controlled Delay Differential Equations

➔ Academic and Scientific Involvement

➔ Conclusion

Presentation Outline
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Maximum Entropy: Noise Robustness
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 ⟶  Infinitesimal volume (a.k.a. event) of 

Entropy = Uncertainty Measure

Uncertainty on du

Entropy (average uncertainty)

Gaussian case

How to quantify the uncertainty on the control law         ?
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Robustness: Maximum Entropy and Regularity

Hypothesis
Entropy   ⟶  Policy complexity

Previous Results1

● Better exploration
● Robustness
● Loss regularisation

1A. Ahmed et al. "Understanding Flat Minima in Neural Networks", ICLR (2019)

Why does entropy improve robustness?
Why does entropy regularise the optimisation landscape?

Questions
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Maximum Entropy Reinforcement Learning

EntropyControl objective



1R. Hosseinkhan-Boucher et al. "Evidence on the Regularisation Properties of Maximum-Entropy Reinforcement Learning", Optimization and Learning Conference  (2024)

Rate of Excess Risk Under Noise1

 ⟶  How much the objective function deteriorates when 

Robustness Measure

Hypothesis

 ⟶  Feedback observation policy

Noisy Observable

Noisy observation of the 1st coordinate of the Lorenz system
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Robustness Measure: Experiments

Experiment
● Train 10 seeds x 5 entropy levels

● Test over different noise intensities 

Results
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Model Regularity

Question
Which complexity measures characterise robustness to noise?

1B. Neyshabur et al. “Exploring Generalization in Deep Learning", NIPS (2017)

measures the model complexity

Complexity Measure1

Robustness Measure

Comparison of model complexity (polynomial class)
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Complexity Measure: Lipschitz Upper Bound

Policy   ⟶

Neural Network   ⟶

Lipshitz Bound

Lipshitz-based Complexity Measure

Comparison of Lipshitz constant for a trigonometric class of functions
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and                      have similar trend

Complexity Measure: Lipschitz Upper Bound

Results

Lipshitz-based Complexity Measure

(Up to a threshold for KS)
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Contributions and Perspectives

Perspectives

Results
Entropy   ⟶  Robustness to noise

Contributions
● Robustness Metric: Excess Risk Under Noise
● Complexity Measure: Model Regularity
● Complexity Measure: Optim. Landscape

Entropy   ⟶  Regularity

Optimization and Learning: 7th International Conference, Revised Selected Papers (2024)

Mathematical analysis (theoretical Deep Reinforcement Learning)
15



Learning-Based Control: Sampling Strategies 
with Semi-Markov Decision Process
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  ⟶                                     Probability on the next state       !

Model-based Control: Gaussian Process Modelling1

Learning Dynamics with Gaussian (Spatial) Process1

Controlled Markov Chain

1C. E. Rasmussen et al. "Gaussian Processes in Reinforcement Learning", NIPS (2003)
17

Transition Kernel



Learning-based Model Predictive Control
Model Predictive Control1

1L. Grune, J. Pannek - Nonlinear Model Predictive Control, Springer (2011)

Problem (Model Learning)

Question
Which online sampling strategy?

Fixed sampling budget   ⟶  
Learn
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Entropy Map

Uncertainty on dx

Entropy (average uncertainty)

How to quantify the uncertainty on                            ?

Gaussian case
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Red dots are observation contained in 



Expected Information Gain1

1D. V. Lindley “On a measure of the Information Provided by an Experiment”, Chapel Hill and Berkley meetings of the Institute of Mathematical Statistics (1955)

How to select the next data point                  ?

Dataset Construction (Sampling)

Expected Information Gain (EIG) on the Optimal Trajectory2
Optimal trajectory under           ⟶  

Process trajectory   ⟶  

2V. Mehta et al.  "An Experimental Design Perspective on Model-Based Reinforcement Learning", ICLR (2022)

By symmetry ⟶ Uncertainty on  
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Exploit the auto-correlation of                                 from

Decision Epochs: Temporal Abstraction with Options1

1R. S. Sutton et al. "Between MDPs and semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning", NIPS (1999)

Question
Data                                                                       is collected online along the dynamics
Which online sampling strategy?

Hypothesis

Constant control during 

Irregular (Optional) Decision Epochs  ⟶ 

Semi-Markov Decision Process  ⟶ 

Interdecision delay  ⟶ 

New control space ⟶ 

Temporal Abstraction
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Semi-Markov Expected Information Gain

Results
Temporal Abstraction   ⟶  Information Gain 22

Query the interdecision time to maximise information!

New criterion1

1R. Hosseinkhan-Boucher et al. "Increasing Information for Model Predictive Control with Semi-Markov Decision Processes", L4DC (2024)



Contributions and Perspectives

Perspectives

Results
Temporal Abstraction + EIG   ⟶   Information gain

Contributions
● Temporal Abstraction (Options framework)
● Extension of Information-based acquisition funct.

Information gain   ⟶  Control performances

Proceedings of the 6th Annual Learning for Dynamics & Control Conference, PMLR (2024)

Mathematical analysis (theoretical Gaussian Process MPC)
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Towards Neural Controlled Delay Differential 
Equations for Model Based Control
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Learning Model-based Continuous-time Control1

1C. Yildiz et al. “Continuous-Time Model-Based Reinforcement Learning”, ICML (2021)

Advantages
● Temporal abstraction
● Irregularly sampled data ⟶  Robustness
● Model-based ⟶ Sample efficient

Model Learning
Neural net. 

Limitations
● No partially-observed system

● No delay handling
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Learning Model-based Continuous-time Control1

Advantages
● Temporal abstraction
● Irregularly sampled data ⟶  Robustness
● Model-based ⟶ Sample efficient

Limitations
● No partially-observed system

● No delay handling

Dynamic Programming ⟶ Difficult   

Not Markovian

Model Learning
Neural net. 
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1C. Yildiz et al. “Continuous-Time Model-Based Reinforcement Learning”, ICML (2021)



Delays and Partial Observability: Embedding
Solution ⟶  Markov Property in Larger Space

         ⟶  Always Markov but increasing dimension 
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Takens theorem3

Phase space Delayed observables

plongement (bijection)

3F. Takens “Detecting Strange Attractors in Turbulence”,  Dynamical Systems and Turbulence, Proceeding of a Warwick Symposium (1981)

Information State1,2

⟶  Sufficient information

1O. Sigaud et al. - Processus décisionnels de Markov en intelligence artificielle, Lavoisier (2008)
2J. Subramanian et al. “Approximate Information State for Approximate Planning and Reinforcement Learning in Partially Observed Systems”, JMLR (2022)



Learning Neural Delay Differential Equations (NDDE)

Delay Differential Equations (DDE)1

Particular Case
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1J. K. Hale - Functional Differential Equations, Springer (1971)

Method ⟶ Neural Delay Differential Equations2,3

Optimisation  ⟶ backpropagation through DDE solver

2Q. Zhu et al. “Neural Delay Differential Equation”, ICLR (2021)
3T. Monsel et al. “Time and State Dependent Neural Delay Differential Equations”, PMLR - ECAI Workshop (2024)

⟶       implicit Information State



Learning NDDE: Ablation Study
Experiment

NODE ⟶
NCDE ⟶
NDDE ⟶
NCDDE ⟶

System: Van der Pol Oscillator
Compare 4 neural architectures

Collect dataset of trajectories 
with noisy control                        
and  
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Hypothesis

Generate predictive data (time series) ⟶
Compare 4 neural architectures  ⟶

-dependant models  ⟶  
-dependant models fit better    ⟶  

Minimise over                    ⟶



Learning NDDE: Ablation Study - Results

Results
-dependant models  ⟶  

-dependant models fit better    ⟶  
-dependant models also improve when 

Drawback
Increased computational complexity 30

NODE ⟶
NCDE ⟶
NDDE ⟶
NCDDE ⟶



Contributions and Perspectives

Perspectives

Results

Contributions
● Functional Differential Equation framework in Continuous-time model-based control
● Links with Information States and Dynamical Systems theory
● Controlled Neural Differential Equations

Delay Differential Equation   ⟶  Better regression performances

Continuous-time Dynamic Programming in Infinite Dimensional Spaces?
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Academic and Scientific Involvement
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Academic and Scientific Involvement

Contribution in open-source packages 󰞦
● control_dde  (with T. Monsel)
● stable_baselines3
● hydrogym
● torchdde

Internship supervision 󰡵
● Information-driven learning-based MPC (with S. Douka)
● Learning-based Functional Dynamic Programming (with E. Pradeleix)

Teaching 󰞨
● C++ (Université Paris-Saclay)
● Data Science Project (CentraleSupélec)
● Advanced Deep Learning (ENS Paris-Saclay MVA)

Reviews 󰞨
● Transaction in Automatic and Control
● Journal of Fluid Mechanics
● European Workshop in Reinforcement Learning
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General Conclusion
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Interdisciplinary Research

Contribution to Learning-based Control Challenges 

Brings concepts from various fields and a novel viewpoint
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Learning-based Control of Dynamical Systems:
Challenges
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⟶  Right Leptokurtic distribution 

Complexity Measure: Conditional Fisher Information
Hessian and Fisher Information

Results

Objective Hessian   ⟶

Fisher Information   ⟶

Fisher Information Complexity Measure

whereDensity of

⟶  Relatively less extreme values
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Objective Function and Inter-decision time

Results
Temporal Abstraction   ⟶  Information Gain  ⟶  Control performances
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Placeholder

Placeholder

Placeholder

1C. E. Rasmussen et al. "Gaussian Processes in Reinforcement Learning" NIPS (2003)
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