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Introduction: Real-world applications require robustness

Real-world applications require
robustness

Origin of disturbances

e Noise

e Non-stationarity

Von Karmdn vortex street in the wake of a cylinder with Re=32 (top) and
Re=102 (bottom). The adaptation of models to the evolution of the
underlying dynamic is a property of robust models. e Partial Observability

e Stochasticity

Recent theoretical works about robustness in Reinforcement Learning !

So far applied on Robotics, what about PDE control ?

g Eysenbach, S. Levine. "Maximum Entropy RL (Provably) Solves Some Robust RL Problems”, International Conference on Learning Representations (2022)



Controlled Kuramoto-Sivashinksy

Controlled KS: 2Y(x, t) + v(x,t)2(x, t) = — 2% (x, t) — L¥(x, t) + ¢(x) * u(t)

Equation is controlled through ¢ x u vix+Lt)=v(xt) and (x, 1) €0, L] x [0, T]

A A AA =
\ ‘\ = ¢xu(z,t)
0 \V/ L :

¢ is a given convolution kernel, u is the unknown

Properties

e Spatio-temporal chaos, 4th order non-linear
e Equilibria, relative equilibria, symmetries

Previous work

. . . o . . 0 20 40 60 80
Extanding our previous work with Deterministic x

Time evolution of the Kuramoto Sivashinsky equation with L = 100

Policy Gradient !
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IM. A. Bucci et al. " Control of Chaotic Systems by Deep Reinforcement Learning”, Proceedings of the Royal Society A (2019)



Maximum Entropy Objective

Suppose u is a stochastic control with distribution 7(du)

Quadratic Objective

T Entropy
Jw) = [ (v I + e, 0]
0 0% o 0,
_ o 00 %9059 0907
Maximum Entropy Quadratic Objective o o o0 OOO o *@
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High Entropy, High Disorder Low Entropy, Low Disorder

where H denotes the Entropy.
Question

What is the impact of considering the Maximum Entropy objective over the classic objective
with Reinforcement Learning?



Modelling as Markov Decision Process

Controlled Dynamical System x¢y1 = G(x¢, ue), ur €U, x; € X.

Markov Decision Process representation
Consider G as a stochastic process X;.1 = G(X;, U;)

Transition Probability
P((x¢, ut), dxe41) is a distribution over X" given (x¢, ur) € X x U

Example (Deterministic case)
P((xt, u), dXe41) = 06(x,u,)(dXe+1), the transition is determined by G

Policy
m(x, du) is a distribution over U given x € X

Deterministic PDE: randomness is induced by the control U



Standard Objective vs. Maximum Entropy Objective

Policy
m(x, du) is a distribution over U given x € X

Example (Gaussian)
7(x, du) ~ N (pix, 02)
Cost-per-step

c: X xA—Ry

Example (energy)
c(x,a) = [|x[|* + [|u]]?

Standard Objective Max Entropy Objective
J7 =B[22 v e (X, Un)] JT =B[22 v e (Xe, Up)] — oH(n(x, du))
Optimal policy

m* :=argmin J™
el

Goal: find a policy 7* such that an objective is minimised



Functional approximation

Parametric Statistics

Distribution is parametrised by § € ©, 7 := 7y ) )
Trajectory sampling

Objective J™ := J™ = J(6)
Optimal policy mg« where 6* = argmin Jy(x) N |f

9e0 y 4
Trajectories are sampled to estimate the process distribution //f g o
Monte Carlo method (Estimation) ‘
h' = (X{, Ul Xpy ooy X g, U, X’T) Policy update //

- 00 o 1 N o P i1 = 0 — V) (6) y— 4

J(0) = EF[Eate (0] = & S0 [0 ate (. 20)] =
Optimisation (Gradient Descent) /4
Ors1 = 0, — VI (0;) /’




Reinforcement Learning: Kuramoto-Sivashinsky setting

State and control spaces
X = L3([0,1]) ~ R?
U=1*(-aa)) ~[a,a]”

with d, b € N, discretization dimensions (e.g. d = 64)

Cost is the energy of the system

c(x) = llx[I3 + Bllull3
Control is a gaussian mixture weighted by U; ~ 7 (X;, )

b a2
o0t

System evolution: spatial discretisation with exponential
time-differencing.

control law




Experiments 1: Stabilising the dynamics

With spatial domain x € [0,22], the PDE has 4
steady-state solutions E;(x), i =0,---,3

Task
Minimise J] :=
EY [Z(:il ~vie (X, Up)] — aH(m(x, du))
with c(x) = A|Ix[5 + B]|ulj3
Configuration
Method Proximal Policy Optimisationl(PPO)
Time horizon t € [0, 20]

Data 2000 trajectories from random initial

conditions with shifting distribution

Random TT g Optimal TT g+

X
A
A

Fourier representation of time-independant solutions

Ei(x) with random (left) and optimal (right) controlled
trajectories.

Representation of the equilibria Ey, E;, E>, E3



Experiment 1: Stabilising the dynamics

Objective
Minimise J7 := ET [ 72, vc (X, Up)] — aH(m(x, du))
with c(x) = Allx[13 + Bllull3
Random initial condition X, ~ N(E,,0?)
Control the state x; towards the equlibrium Ey =0
Experiment

e Fix 3 different levels of entropy (¥

Optimise 10 seeds (decrease incertainty) for each of the (x

Entropy linear decay during optimisation

Test policy on new initial condition distribution Xy ~ N(E3,0?)
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0 100 200 300 400
optim. step (x1000)

Decay of (X during optimisation
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Result 1: Maximising Entropy improves generalisation

XO NN(EQ,UZ) Xo NN(E3,0'2)
(As for training) (Out of sample evaluation)
equilibria = 2 equilibria = 3
3200 10000
Black curve: (X =— O
3000 9000 &
I Blue curves: (¥ > ()
2800 8000
X ent_coef
7000 — 00
2500 x//_\ oor
6000 0.02
2400 4
N 5000 Average over 10 models
2200
f000 for each of the
140 160 180 200 220 240 140 160 180 200 220 240 *
optim. step (x1000) optim. step 1000y (total 40 models 0 )

Optimal ET [322°, " || Xe||” + || Ut |?] for different levels of (¥

Observations
e No-entropy objective converges faster

e Entropy improves generalisation performances (lower energy on out of sample distribution)
11



Experiment 2: Policy evaluation under noisy observations

Controlled KS: 2Y(x, t) + v(x, t)2(x, t) = = 2%(x, t) — L¥(x, t) + b(x) * u(t)

In practice: partial observability

PDE controlling term ¢(y) * u(t)
Noisy observable y(x) = x v(x) + €(x)
Sensor noise ¢(x) ~ N(x,0?)

Hypothesis
Maximum entropy solutions are robust to noise

Observation noise decreases performances
Experiment

e Test policy with different level of noise o on y

e Compare evolution of JT~ w.r.t. J™ :

JZ,T* —JW*

¥

L — Y(x) =Y *v(2) + €(2)

0

e €(2) ~ N (2,0%)
0 L

Noisy observable

. * 2 2
with J™ = BT |22, 7 1Xell” + || Uel
and JT~ same quantity evaluated
with noisy observables

12



Result 2: Entropy improves noise robustness

Black bar: == 0
Blue bars: > 0

- 00
0.005
0.01

I o oo Average over 10 models
| | for each of the «
" | (total 40 models 6*)

wse”a(‘;"”'“ Noisy observable y(x) = v * v(x)+¢€(x)

Variation of the objective to minimise after noise introduction Sensor noise g(X) ~ ./\/'(X, (72)

Observations

e Noise introduction globally increases the cost function

e The classic objective is the more sensitive to noise (up to 3x.)

e Adding the entropy constraint (X improves robustness 13



Conclusion: Entropy Objective defines a Robustness/Performance trade-off

Performance Penalised objective # standard objective
Generalisation State space exploration

Robustness Noise introduction

Further work Model regularity properties (Lipschitz continuity),

Related References
® T. Haarnoja et al. "Reinforcement Learning with Deep Energy-Based Policies”, International Conference on Machine Learning (2017)
® Z. Ahmed et al. "Understanding the Impact of Entropy on Policy Optimization”, International Conference on Machine Learning (2019)

® B. Eysenbach, S. Levine. "Maximum Entropy RL (Provably) Solves Some Robust RL Problems”, International Conference on Learning

Representations (2022)
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Modelling as Markov Decision Process

Controlled Dynamical System x;11 = G(x¢, ut), ur €U, x; € X.

Markov Decision Process representation
Consider G as a stochastic process X; 1 = G(X;, U;)

Transition Probability
P((xt, ut), dxe11) is a distribution over X given (x;, u;) € X x U

Example (Deterministic case)
P((Xt’ ut)a dXH—l) = 5G(xf,u,)(dxt+1)

Policy
7(x, du) is a distribution over U given x € X

Process Distribution
P™ (dxo, dug, dxq, duy . .., dx;) = v (dxo) 7 (X0, dug) P (dxa | x1, t1) 7 (x2, dup) - - -

7T(Xt—1, dUt—l) P(dXt | Xt—1, Ut—l)
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