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Introduction: Real-world applications require robustness

Von Kármán vortex street in the wake of a cylinder with Re=32 (top) and

Re=102 (bottom). The adaptation of models to the evolution of the

underlying dynamic is a property of robust models.

Real-world applications require

robustness

Origin of disturbances

• Noise

• Non-stationarity

• Stochasticity

• Partial Observability

Recent theoretical works about robustness in Reinforcement Learning 1

So far applied on Robotics, what about PDE control ?

1B. Eysenbach, S. Levine. ”Maximum Entropy RL (Provably) Solves Some Robust RL Problems”, International Conference on Learning Representations (2022)
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Controlled Kuramoto-Sivashinksy

Controlled KS: ∂v
∂t (x , t) + v(x , t)∂v∂x (x , t) = −∂2v

∂x2 (x , t)− ∂4v
∂x4 (x , t) + ϕ(x) ∗ u(t)

Equation is controlled through ϕ ∗ u

ϕ is a given convolution kernel, u is the unknown

Properties

• Spatio-temporal chaos, 4th order non-linear

• Equilibria, relative equilibria, symmetries

Previous work
Extanding our previous work with Deterministic

Policy Gradient 1

v(x + L, t) = v(x , t) and (x , t) ∈ [0, L]× [0,T ]

Time evolution of the Kuramoto Sivashinsky equation with L = 100

1M. A. Bucci et al. ”Control of Chaotic Systems by Deep Reinforcement Learning”, Proceedings of the Royal Society A (2019)
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Maximum Entropy Objective

Suppose u is a stochastic control with distribution π(du)

Quadratic Objective

J(u) =

∫ T

0

(
∥v(x , t)∥2 + ∥u(x , t)∥2

)
dt

Maximum Entropy Quadratic Objective

J(u) =

∫ T

0

(
∥v(x , t)∥2 + ∥u(x , t)∥2

)
dt−αH(π(du))

whereH denotes the Entropy.

Question

What is the impact of considering the Maximum Entropy objective over the classic objective

with Reinforcement Learning?
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Modelling as Markov Decision Process

Controlled Dynamical System xt+1 = G(xt , ut), ut ∈ U , xt ∈ X .

Markov Decision Process representation
Consider G as a stochastic process Xt+1 = G (Xt ,Ut)

Transition Probability
P((xt , ut), dxt+1) is a distribution over X given (xt , ut) ∈ X × U

Example (Deterministic case)
P((xt , ut), dxt+1) = δG(xt ,ut)(dxt+1), the transition is determined by G

Policy
π(x , du) is a distribution over U given x ∈ X

Deterministic PDE: randomness is induced by the control U !
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Standard Objective vs. Maximum Entropy Objective

Policy
π(x , du) is a distribution over U given x ∈ X

Example (Gaussian)

π(x , du) ∼ N (µx , σ
2
x)

Cost-per-step
c : X ×A → R+

Example (energy)

c(x , a) = ∥x∥2 + ∥u∥2

Standard Objective Max Entropy Objective

Jπx := Eπ
x [
∑∞

t=1 γ
tc (Xt ,Ut)] Jπx := Eπ

x [
∑∞

t=1 γ
tc (Xt ,Ut)]− αH(π(x , du))

Optimal policy
π∗ := argmin

π∈Π
Jπ

Goal: find a policy π∗ such that an objective is minimised
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Functional approximation

Parametric Statistics
Distribution is parametrised by θ ∈ Θ, π := πθ

Objective Jπ := Jπθ = J(θ)

Optimal policy πθ∗ where θ∗ = argmin
θ∈Θ

Jθ(x)

Trajectories are sampled to estimate the process distribution

Monte Carlo method (Estimation)

hi =
(
x i1, u

i
1, x

i
2, . . . , x

i
T−1, u

i
T−1, x

i
T

)
Jx(θ) = Eπ

x [
∑∞

t=0 α
tc (xt , at)] ≃ 1

N

∑N
i=1

[∑∞
t=0 α

tc
(
x it , a

i
t

)]
Optimisation (Gradient Descent)
θt+1 = θt − η∇J (θt)
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Reinforcement Learning: Kuramoto-Sivashinsky setting

State and control spaces

X = L2([0, L]) ≃ Rd

U = L2([−a, a]) ≃ [−a, a]b

with d , b ∈ N, discretization dimensions (e.g. d = 64)

Cost is the energy of the system

c(x) = λ∥x∥22 + β∥u∥22

Control is a gaussian mixture weighted by Ut ∼ π (Xt , ·)

ϕ(x) ∗ U(t) =
b∑

i=1

Ui
1

2πσ
exp

(
− (x − xai )

2

2σ2

)

System evolution: spatial discretisation with exponential

time-differencing.
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Experiments 1: Stabilising the dynamics

With spatial domain x ∈ [0, 22], the PDE has 4

steady-state solutions Ei (x), i = 0, · · · , 3

Task

Minimise Jπx :=

Eπ
x [
∑∞

t=1 γ
tc (Xt ,Ut)]− αH(π(x , du))

with c(x) = λ∥x∥22 + β∥u∥22

Configuration

Method Proximal Policy Optimisation1(PPO)

Time horizon t ∈ [0, 20]

Data 2000 trajectories from random initial

conditions with shifting distribution

Fourier representation of time-independant solutions

Ei (x) with random (left) and optimal (right) controlled

trajectories.

Representation of the equilibria E0, E1, E2, E3

1J. Schulman et al. ”Proximal Policy Optimization Algorithms”, arXiv preprint (2017)
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Experiment 1: Stabilising the dynamics

Objective

Minimise Jπx := Eπ
x [
∑∞

t=1 γ
tc (Xt ,Ut)]− αH(π(x , du))

with c(x) = λ∥x∥22 + β∥u∥22

Random initial condition X0 ∼ N (E2, σ
2)

Control the state xt towards the equlibrium E0 = 0

Experiment

• Fix 3 different levels of entropy α
• Optimise 10 seeds (decrease incertainty) for each of the α
• Entropy linear decay during optimisation

• Test policy on new initial condition distribution X0 ∼ N (E3, σ
2)

Decay ofα during optimisation
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Result 1: Maximising Entropy improves generalisation

Optimal Eπ
x

[∑∞
t=1 γ

t ∥Xt∥2 + ∥Ut∥2
]
for different levels of α

Black curve: α = 0
Blue curves: α > 0

Average over 10 models

for each of the α
(total 40 models θ∗)

Observations

• No-entropy objective converges faster

• Entropy improves generalisation performances (lower energy on out of sample distribution)
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Experiment 2: Policy evaluation under noisy observations

Controlled KS: ∂v
∂t (x , t) + v(x , t)∂v∂x (x , t) = −∂2v

∂x2 (x , t)− ∂4v
∂x4 (x , t) + ϕ(x) ∗ u(t)

In practice: partial observability

PDE controlling term ϕ(y) ∗ u(t)
Noisy observable y(x) = ψ ∗ v(x) + ϵ(x)

Sensor noise ϵ(x) ∼ N (x , σ2)

Hypothesis
Maximum entropy solutions are robust to noise

Observation noise decreases performances

Experiment

• Test policy with different level of noise σ on y

• Compare evolution of Jπ
∗

σ w.r.t. Jπ
∗
:

Jπ
∗

σ −Jπ
∗

Jπ
∗

Noisy observable

with Jπ∗
= Eπ

x

[∑∞
t=1 γ

t ∥Xt∥2 + ∥Ut∥2
]

and Jπ
∗

σ same quantity evaluated

with noisy observables
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Result 2: Entropy improves noise robustness

Variation of the objective to minimise after noise introduction

Black bar: α = 0
Blue bars: α > 0

Average over 10 models

for each of the α
(total 40 models θ∗)

Noisy observable y(x) = ψ ∗ v(x)+ ϵ(x)

Sensor noise ϵ(x) ∼ N (x , σ2)

Observations

• Noise introduction globally increases the cost function

• The classic objective is the more sensitive to noise (up to 3x.)

• Adding the entropy constraint α improves robustness 13



Conclusion: Entropy Objective defines a Robustness/Performance trade-off

Performance Penalised objective ̸= standard objective

Generalisation State space exploration

Robustness Noise introduction

Further work Model regularity properties (Lipschitz continuity),

Related References

• T. Haarnoja et al. ”Reinforcement Learning with Deep Energy-Based Policies”, International Conference on Machine Learning (2017)
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Modelling as Markov Decision Process

Controlled Dynamical System xt+1 = G (xt , ut), ut ∈ U , xt ∈ X .

Markov Decision Process representation
Consider G as a stochastic process Xt+1 = G (Xt ,Ut)

Transition Probability
P((xt , ut), dxt+1) is a distribution over X given (xt , ut) ∈ X × U

Example (Deterministic case)
P((xt , ut), dxt+1) = δG(xt ,ut)(dxt+1)

Policy
π(x , du) is a distribution over U given x ∈ X

Process Distribution
Pπ (dx0, du0, dx1, du1 . . . , dxt) = ν (dx0)π (x0, du0)P (dx2 | x1, u1)π (x2, du2) · · ·

π (xt−1, dut−1)P (dxt | xt−1, ut−1)
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