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Goal, Notations and Definitions

Dynamics (Discrete Time)
Xk+1 = F ∗(Xk)

State Space

X ⊂ RdX

Vector Field
F ∗ : X → X

Dataset

D = ((xi ,F
∗(xi )))

n
i=1 =

(
xD,F ∗,D)

Goal

• Infer F ∗ from D
• Quantify the uncertainty on F ∗

• Sampling strategy to improve the inference

Example (Noisy Oscillator)

F ∗ : ((x1, x2)) =

(
x2

−x31 + x1

)
dX = 2
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Bayesian Nonparametric Regression

F is unknown

• Hypothesis space (class of function) F
• Suppose F ∗ ∈ F

Uncertainty on F

• Define PF : A ⊂ P(F) → [0, 1]

such that PF (F) = 1

• PF is called a probability measure

• Given K ⊂ F , PF (K) ∈ [0, 1] measures

the confidence or belief that F ∈ K
• PF is arbitrarily chosen a priori such that

it it possible to sample from it

Functional Probability Space

Goal

• Use the dataset D to infer a posterior measure PF (· | D) 2



Function Sampling
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Gaussian Vector vs. Gaussian Process

F can be sampled from F according to the weights given by PF . Notation: F ∼ PF

Gaussian Vector

Suppose X = {x1, . . . , xm} ∈
(
RdX

)m
is finite

F := (Fx1 , . . . ,Fxm) = (Fxi )xi∈X

Mean Vector

(µxi )xi∈X := (E [Fxi ])xi∈X

Covariance Matrix(
kxi ,xj

)
xi ,xj∈X×X :=

(
Cov

(
Fxi ,Fxj

))
xi ,xj∈X×X

Gaussian Process

Suppose X = {x ∈ X} ⊂ RdX is infinite

F := (Fx)x∈X

Mean Operator

(µx)x∈X := (E [Fx ])x∈X

Covariance Operator

(kx,x′)x,x′∈X×X := (Cov (Fx ,Fx′))x,x′∈X×X

In both cases, for any finite collection
(
Fx1 , . . . ,Fxq

)
∼ N

((
µx1 , . . . , µxq

)
,
(
kxi ,xj

)
1≤i,j≤q

)
Particularly, Fx ∼ N (µx , kx,x)

PFx1
,...,Fxq

= fN ((µx1
,...,µxq ),(kxi ,xj )i,j )

dx1 . . . dxq, fN ((µx1
,...,µxq ),(kxi ,xj )i,j )

is the associated Gaussian density

Notation: F ∼ GP(µ, k) if F is a Gaussian Process (GP)
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Gaussian Process Regression

• GP are characterised by µ and k .

• Choose F ∼ GP(µ, k), i.e., PF = GP(µ, k)

• Recall that X is infinite, thus

(kx,x′)x,x′∈X×X := (Cov (Fx ,Fx′))x,x′∈X×X
needs to be specified by the kernel operator k

A priori, µ and k are chosen:

• µ = 0

• kx,x′ = exp
(
−∥x−x′∥2

2

)

5



Other kernels
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Posterior Probability Measure

Bayes’ Theorem (Gaussian Density Measure)

• PFx1
|Fx2

=
PFx1

,Fx2

PFx2

=
PFx2

|Fx1
PFx1

PFx2

• In terms of densities functions:

fFx1
|Fx2

=
fFx1 ,Fx2
fFx2

=
fFx2 |Fx1

fFx1
fFx2

Gaussian Posterior Density
Given: (Fx1 ,Fx2) ∼ N ((µx1 , µx2) , (kx1,x1 , kx2,x2)) = PFx1

,Fx2

Fx1 | Fx2 = y2 ∼ N
(
µFx1

|Fx2
, kFx1

|Fx2

)
µFx1

|Fx2
= µx1 +

kx1,x2
kx2,x2

kx2,x1 (y2 − µx2)

kFx1
|Fx2

= kx1,x1 −
kx1,x2
kx2,x2

kx2,x1

This generalise by replacing Fx2 by a whole dataset of

observations F ∗,D from D = ((xi ,F
∗(xi )))

n
i=1 =

(
xD,F ∗,D)
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Posterior Probability Measure

Learning
Let x ′ ∈ X be a test point

Hence, Fx′ | F ∗,D ∼ N
(
µD
x′ , kD

x′,x′

)
Define the posterior covariance matrix KD =

(
kxi ,xj

)
xi ,xj∈D

Define the test covariance vector kD
x′ = (kxi ,x′)xi∈D

µD
x′ = ⟨kD

x′ , KD−1
F ∗,D⟩ = ⟨kD

x′ , F ∗,D⟩KD−1

kD
x′,x′ = kx′,x′ − ⟨kD

x′ , KD−1
kD
x′ ⟩ = kx′,x′ − ∥kD

x′ ∥2KD−1

Connection with Functional Analysis
Links with Reproducing Kernel Hilbert Space (RKHS), in

Kernel Regression, Hk := span {k·,x | x ∈ X}
µD
x′ := argminµ∈Hk

∥µ∥2Hk
s.t. µxi = Fxi

Observe the link with Proper Orthogonal Decomposition

(POD) through the Mercer’s theorem

kx,x′ =
∑∞

i=1 λiϕi (x)ϕi (x
′) 8



Scalar field regression on the whole state space X
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Entropy Map (Boltzmann 1870, Shannon 1948, Kolmogorov 1956)

Pick a point x ′ ∈ X
How to quantify the uncertainty on Fx′?

Let dx an infinitesimal volume element of X
Uncertainty on dx

I (dx) = log( 1
PFx′

(dx) ) > 0

Entropy (average uncertainty)

H(Fx′) =
∫
R log 1

PFx′
(dx)PFx′ (dx)

Gaussian Entropy
PFx′ (dx) = fN (µx′ ,kx′,x′ )

(x)dx

If Fx′ ∼ N (µx′ , kx′,x′), H(Fx′) = 1
2 log (2πe kx′,x′)

In the Gaussian case, the variance kx′,x′ characterise

the entropy
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Practical Question

In this context, given the following:

F (x) = sin(x), x ∈ X

How to choose the Dataset D, given a fixed budget n ?

Hypothesis
- D ∼ Uniform(X n) ?

- D maximises H(D) ? (Note this is equivalent to the previous one if X is bounded)

- D = {(xk ,F (xk))}nk=1, where xk+1 = F (xk) (a trajectory) ?
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