Meeting Mécanique-Energétique Department

Gaussian Process Regression on Vector Fields and Uncertainty Quantification

Rémy Hosseinkhan Boucher, Stella Douka, Onofrio Semeraro, Lionel Mathelin¹

Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, CNRS

Doctoral School: Sciences and Technologies of Information and Communication (STIC)

Granted by the Agence Nationale de la Recherche (ANR) under projet ANR-21-CE46-0008 Reinforcement Learning as Optimal control for Shear Flows (REASON)

Goal, Notations and Definitions

Dynamics (Discrete Time)

$$X_{k+1} = F^*(X_k)$$

State Space

$$\mathcal{X} \subset \mathbb{R}^{d_{\mathcal{X}}}$$

Vector Field

 $F^*: \mathcal{X} \to \mathcal{X}$

Dataset

$$D = ((x_i, F^*(x_i)))_{i=1}^n = (x^D, F^{*,D})$$

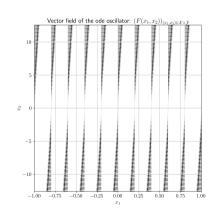
Goal

- Infer F^* from \mathcal{D}
- Quantify the uncertainty on F*
- Sampling strategy to improve the inference

Example (Noisy Oscillator)

$$F^*: ((x_1, x_2)) = \begin{pmatrix} x_2 \\ -x_1^3 + x_1 \end{pmatrix}$$

 $d_{\mathcal{X}} = 2$



Bayesian Nonparametric Regression

F is unknown

- ullet Hypothesis space (class of function) ${\cal F}$
- Suppose $F^* \in \mathcal{F}$

Uncertainty on *F*

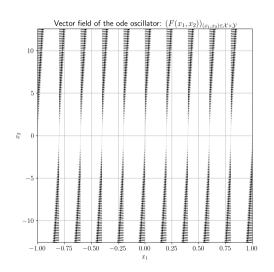
- ullet Define $\mathbb{P}_{\mathit{F}}:\mathcal{A}\subset\mathcal{P}(\mathcal{F})
 ightarrow [0,1]$ such that $\mathbb{P}_{\mathit{F}}(\mathcal{F})=1$
- \mathbb{P}_F is called a **probability measure**
- Given $\mathcal{K} \subset \mathcal{F}$, $\mathbb{P}_F(\mathcal{K}) \in [0,1]$ measures the confidence or **belief** that $F \in \mathcal{K}$
- P_F is arbitrarily chosen a priori such that it it possible to sample from it

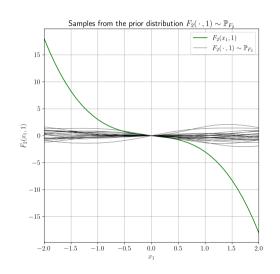
$\mathbb{F}_F(\mathcal{F}) = 1$ $\mathbb{P}_F(\mathcal{K}) > 0$ $\mathrm{supp}(\mathbb{P}_F) =$ $\mathrm{supp}(\mathbb{P}_F(\cdot \mid \mathcal{D})) =$ Functional Probability Space

Goal

• Use the dataset $\mathcal D$ to infer a posterior measure $\mathbb P_F(\cdot\mid \mathcal D)$

Function Sampling





Gaussian Vector vs. Gaussian Process

F can be **sampled** from \mathcal{F} according to the weights given by \mathbb{P}_F . Notation: $F \sim \mathbb{P}_F$

Gaussian Vector

Suppose $\mathcal{X} = \{x_1, \dots, x_m\} \in (\mathbb{R}^{d_{\mathcal{X}}})^m$ is finite $F := (F_{x_1}, \dots, F_{x_m}) = (F_{x_i})_{x_i \in \mathcal{X}}$

Mean Vector

$$(\mu_{\mathsf{x}_i})_{\mathsf{x}_i \in \mathcal{X}} := (\mathbb{E}\left[\mathsf{F}_{\mathsf{x}_i}\right])_{\mathsf{x}_i \in \mathcal{X}}$$

Covariance Matrix

$$(k_{x_i,x_j})_{x_i,x_j\in\mathcal{X}\times\mathcal{X}}\coloneqq (\mathsf{Cov}(F_{x_i},F_{x_j}))_{x_i,x_j\in\mathcal{X}\times\mathcal{X}}$$

Gaussian Process

Suppose $\mathcal{X} = \{x \in \mathcal{X}\} \subset \mathbb{R}^{d_{\mathcal{X}}}$ is infinite $F := (F_x)_{x \in \mathcal{X}}$

Mean Operator

$$(\mu_{\mathsf{x}})_{\mathsf{x}\in\mathcal{X}}\coloneqq (\mathbb{E}\left[\mathsf{F}_{\mathsf{x}}\right])_{\mathsf{x}\in\mathcal{X}}$$

Covariance Operator

$$(k_{\mathsf{x},\mathsf{x}'})_{\mathsf{x},\mathsf{x}'\in\mathcal{X}\times\mathcal{X}}\coloneqq(\mathsf{Cov}(F_{\mathsf{x}},F_{\mathsf{x}'}))_{\mathsf{x},\mathsf{x}'\in\mathcal{X}\times\mathcal{X}}$$

In both cases, for any finite collection
$$(F_{x_1}, \dots, F_{x_q}) \sim \mathcal{N}\left(\left(\mu_{x_1}, \dots, \mu_{x_q}\right), \left(k_{x_i, x_j}\right)_{1 \leq i, j \leq q}\right)$$

Particularly, $F_x \sim \mathcal{N}\left(\mu_x, k_{x,x}\right)$

$$\mathbb{P}_{F_{x_1},\dots,F_{x_q}} = f_{\mathcal{N}((\mu_{x_1},\dots,\mu_{x_q}),(k_{x_i},x_j)_{i,j})} dx_1\dots dx_q, \quad f_{\mathcal{N}((\mu_{x_1},\dots,\mu_{x_q}),(k_{x_i},x_j)_{i,j})} \text{ is the associated Gaussian density}$$

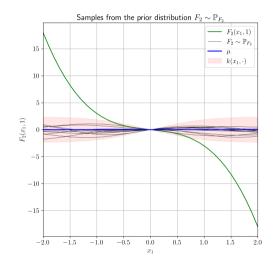
Notation: $F \sim \mathcal{GP}(\mu, k)$ if F is a Gaussian Process (GP)

Gaussian Process Regression

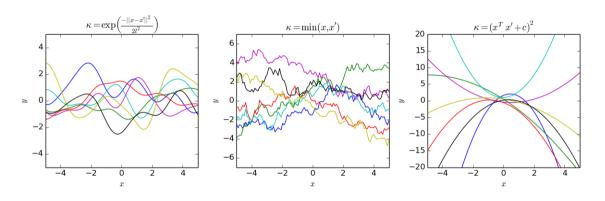
- GP are **characterised** by μ and k.
- Choose $F \sim \mathcal{GP}(\mu, k)$, i.e., $\mathbb{P}_F = \mathcal{GP}(\mu, k)$
- Recall that \mathcal{X} is **infinite**, thus $(\mathbf{k}_{x,x'})_{x,x'\in\mathcal{X}\times\mathcal{X}} := (\text{Cov}(F_x,F_{x'}))_{x,x'\in\mathcal{X}\times\mathcal{X}}$ needs to be specified by the kernel operator k

A priori, μ and k are chosen:

- $\mu = 0$
- $k_{x,x'} = \exp\left(-\frac{\|x-x'\|^2}{2}\right)$



Other kernels



Posterior Probability Measure

Bayes' Theorem (Gaussian Density Measure)

- $\bullet \ \mathbb{P}_{F_{x_1}|F_{x_2}} = \frac{\mathbb{P}_{F_{x_1},F_{x_2}}}{\mathbb{P}_{F_{x_1}}} = \frac{\mathbb{P}_{F_{x_2}|F_{x_1}}\mathbb{P}_{F_{x_1}}}{\mathbb{P}_{F}}$
- In terms of densities functions:

$$f_{F_{x_1}|F_{x_2}} = \frac{f_{F_{x_1},F_{x_2}}}{f_{F_{x_2}}} = \frac{f_{F_{x_2}|F_{x_1}}f_{F_{x_1}}}{f_{F_{x_2}}}$$

Gaussian Posterior Density

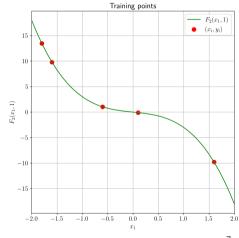
Given:
$$(F_{x_1}, F_{x_2}) \sim \mathcal{N}((\mu_{x_1}, \mu_{x_2}), (k_{x_1, x_1}, k_{x_2, x_2})) = \mathbb{P}_{F_{x_1}, F_{x_2}}$$

$$F_{x_1} \mid F_{x_2} = y_2 \sim \mathcal{N}\left(\mu_{F_{x_1} \mid F_{x_2}}, k_{F_{x_1} \mid F_{x_2}}\right)$$

$$\mu_{F_{x_1} \mid F_{x_2}} = \mu_{x_1} + \frac{k_{x_1, x_2}}{k_{x_2, x_2}} k_{x_2, x_1} (y_2 - \mu_{x_2})$$

$$k_{F_{x_1} \mid F_{x_2}} = k_{x_1, x_1} - \frac{k_{x_1, x_2}}{k_{x_2, x_2}} k_{x_2, x_1}$$

This generalise by replacing F_{∞} by a whole dataset of **observations** $F^{*,\mathcal{D}}$ from $\mathcal{D} = ((x_i, F^*(x_i)))_{i=1}^n = (x^{\mathcal{D}}, F^{*,\mathcal{D}})$



Posterior Probability Measure

Learning

Let $x' \in \mathcal{X}$ be a test point

Hence,
$$F_{x'} \mid F^{*,\mathcal{D}} \sim \mathcal{N}\left(\mu_{x'}^{\mathcal{D}}, k_{x',x'}^{\mathcal{D}}\right)$$

Define the **posterior covariance matrix** $K^{\mathcal{D}} = (k_{x_i, x_j})_{x_i, x_j \in \mathcal{D}}$

Define the **test covariance vector**
$$k_{x'}^{\mathcal{D}} = (k_{x_i,x'})_{x_i \in \mathcal{D}}$$

$$\mu_{\mathbf{x}'}^{\mathcal{D}} = \langle k_{\mathbf{x}'}^{\mathcal{D}}, \, K^{\mathcal{D}^{-1}} F^{*,\mathcal{D}} \rangle = \langle k_{\mathbf{x}'}^{\mathcal{D}}, \, F^{*,\mathcal{D}} \rangle_{K^{\mathcal{D}^{-1}}} \\ k_{\mathbf{x}',\mathbf{x}'}^{\mathcal{D}} = k_{\mathbf{x}',\mathbf{x}'} - \langle k_{\mathbf{x}'}^{\mathcal{D}}, \, K^{\mathcal{D}^{-1}} k_{\mathbf{x}'}^{\mathcal{D}} \rangle = k_{\mathbf{x}',\mathbf{x}'} - \|k_{\mathbf{x}'}^{\mathcal{D}}\|_{K^{\mathcal{D}^{-1}}}^2$$

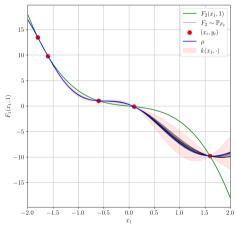
Connection with Functional Analysis

Links with Reproducing Kernel Hilbert Space (RKHS), in Kernel Regression, $\mathcal{H}_k := \overline{\operatorname{span}\{k_{\cdot,x} \mid x \in \mathcal{X}\}}$

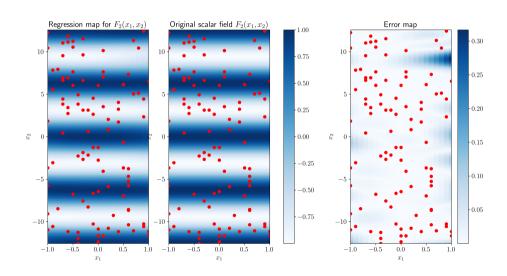
$$\mu_{\nu'}^{\mathcal{P}} := \arg\min_{\mu \in \mathcal{H}_{\nu}} \|\mu\|_{\mathcal{H}_{\nu}}^2 \quad \text{s.t. } \mu_{x_i} = F_{x_i}$$

Observe the link with *Proper Orthogonal Decomposition* (*POD*) through the Mercer's theorem

$$k_{\mathbf{x},\mathbf{x}'} = \sum_{i=1}^{\infty} \lambda_i \phi_i(\mathbf{x}) \phi_i(\mathbf{x}')$$



Scalar field regression on the whole state space ${\mathcal X}$



Entropy Map (Boltzmann 1870, Shannon 1948, Kolmogorov 1956)

Pick a point $x' \in \mathcal{X}$

How to quantify the uncertainty on $F_{x'}$?

Let dx an infinitesimal volume element of \mathcal{X}

Uncertainty on dx

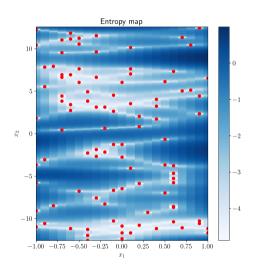
$$I(dx) = \log(\frac{1}{\mathbb{P}_{F_{x'}}(dx)}) > 0$$

Entropy (average uncertainty)

$$\mathcal{H}(F_{x'}) = \int_{\mathbb{R}} \log \frac{1}{\mathbb{P}_{F_{x'}}(dx)} \mathbb{P}_{F_{x'}}(dx)$$

Gaussian Entropy

$$\begin{split} \mathbb{P}_{F_{x'}}(dx) &= f_{\mathcal{N}(\mu_{x'},k_{x',x'})}(x)dx \\ \text{If } F_{x'} &\sim \mathcal{N}(\mu_{x'},k_{x',x'}), \ \mathcal{H}(F_{x'}) = \frac{1}{2}\log\left(2\pi e \ k_{x',x'}\right) \\ \text{In the Gaussian case, the variance } k_{x',x'} \ \text{characterise} \\ \text{the entropy} \end{split}$$



Practical Question

In this context, given the following:

$$F(x) = \sin(x), x \in \mathcal{X}$$

How to choose the Dataset \mathcal{D} , given a fixed budget n?

Hypothesis

- $\mathcal{D} \sim \mathsf{Uniform}(\mathcal{X}^n)$?
- \mathcal{D} maximises $\mathcal{H}(\mathcal{D})$? (Note this is equivalent to the previous one if \mathcal{X} is bounded)
- $\mathcal{D} = \{(x_k, F(x_k))\}_{k=1}^n$, where $x_{k+1} = F(x_k)$ (a trajectory) ?

References

Bayesian Statistics and Gaussian Process

- C. E. Rasmussen, C. K. I. Williams Gaussian Processes for Machine Learning, MIT Press (2006)
- M. Raissi, G. E. Karniadakis Machine Learning of Linear Differential Equations using Gaussian Processes, Journal of Computational Physics (2017)

Information Theory

- T. M. Cover, J. A. Thomas *Elements of Information Theory*, Wiley (2006)
- M. Mézard, A. Montanari Information, Physics, and Computation, Wiley (2009)

Reproducing Kernel Hilbert Space

A. Berlinet, C. Thomas-Agnan - Reproducing Kernel Hilbert Spaces in Probability and Statistics, Springer (2004)