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Model-based vs. Model-free Control

Model-based: An explicit representation of the environment, system, is provided to design a control policy.

Example (Navier-Stokes equation for fluid models):

Example (Geometric Brownian Motion for stock prices):

Model-free: An implicit representation of the system is derived using statistics and data sets.

Data can be collected from a number of differents sources.  Dynamic Mode 
Decomposition: Data Driven Modeling Of Complex Systems, J. N. Kutz et al. (2016).

Reinforcement Learning (RL): Data-driven control policy.

Objective: Improve state-of-the-art RL algorithms applied to 
fluids-mechanics dynamical systems. Find data sampling 
and processing strategies to obtain better control learning.

Data is collected by interacting with the environment.



is called control, 

with periodic condition                                       where                                         .

Kuramoto-Sivashinsky Equation

Definition (Controlled Kuramoto-Sivashinsky): 

Properties:
- Spatio-temporal chaos
- 4th order non-linear PDE
- Stiffness
- Equilibria and relative equilibria
- Symmetries of solutions

History:
- Derived in 1977-78
- Flame propagation (flame front)
- Reaction-Diffusion systems

Time evolution of the Kuramoto Sivashinsky equation with L = 16.
1 Diffusion-Induced Chaos in Reaction Systems, Y. Kuramoto (1978).
2 Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations, G.I. Sivashinsky (1977). 

is called action.



Transition Probability:Modelisation Hypothesis (our Dynamical System is a MDP):

Transition probability is                              for deterministic 
system (when model is given).

Given a dynamical system                                 defined by                         with 

Markov Decision Processes

Remark (Dynamical System case):

Policy (Markovian stationary policy):

is a distribution over 

is a distribution over 

Note:        is called action space and       is called state space

Process Distribution



Markov Decision Processes

Policy (Markovian stationary policy):

Optimal policy:

Cost-per-stage:
is a distribution over 

Example (Cost-per-stage):Example (Policy):

Criterion (Cost function):

State-Action function (Q-function):



Consequently, criterion becomes parametrised:

Statistics: Markov Decision Process estimation

Hypothesis (Parametric Statistics): Policy is parametrised by some vector              i.e. 

Optimal control policy is then given by where 

Trajectories are sampled to estimate the process distribution:

Optimisation (Gradient Descent)

Trajectory sampling

Policy update

Monte Carlo method (Estimation)



Deep Deterministic Policy Gradient

In practice,          is a neural network perturbed by random noise and a more sophisticated algorithm based on 
this concept is applied ( DDPG1).

1 Continuous control with deep reinforcement learning, T. P. Lillicrap (2015).

State-action update (Critic)

DDPG Policy:

Policy update (Actor)

Update Q by minimising:

Update policy by minimising

Let         be a functional approximator parametrised by     .

Parametrisation of Q:
Bellman Equation:



Reinforcement Learning: Kuramoto-Sivashinsky environment

In the context of the Kuramoto-Sivashinsky equation:

The evolution of the system is performed with spatial and 
temporal discretization with exponential time-differencing.

Schema of the reinforcement learning process for the Kuramoto-Sivashinsky dynamical system. Control 
of Chaotic Systems by Deep Reinforcement Learning,  M. A. Bucci et al. (2019).

Cost is the energy of the system:

Control is a gaussian mixture weighted by                            :

State and action spaces:



Experiments: Stabilising the dynamics

Objective:
    Stabilise the dynamics from          to                 .

Under               KS, has multiple steady-state solutions.

Let fix one solution called        .

Policy (      ): two layers neural network, 64 hidden neurons

Configuration:

Cost function

Optimiser: Adam1, (Gradient Descent based)

Time steps:

Method used: Deep Deterministic Policy Gradient (DDPG)

Actuators: equi-spaced along x-axis,



Experiments: Stabilising the dynamic

Observations:
- Controlled trajectory with RL is comparable with LQR.
- However, LQR control is more physically meaningful.

Linear Quadratic Regulator Reinforcement Learning

Linear Quadratic Regulator:
Optimal control of the linearised system:



Experiments: Stabilising the dynamic

Linear Quadratic Regulator Reinforcement Learning

Observations:
- Controlled trajectory with RL is worst than with LQR
- However, RL control is more physically interpretable.

Optimal control 
Linear Quadratic Regulator:

of the linearised system:



Conclusion


