Reinforcement Learning as optimal
control for Shear Flows

Hosseinkhan Boucher, Rémy - Laboratoire Interdisciplinaire des Sciences du Numérique

Joint work with:

Semeraro, Onofrio
Mathelin, Lionel

o ©
C r = anr agence nationale

de la recherche

Model-based vs. Model-free Control

Model-based: An explicit representation of the environment, system, is provided to design a control policy.

Example (Navier-Stokes equation for fluid models): % + (u-V)u—vViu= —%Vp +g

Example (Geometric Brownian Motion for stock prices): dS; = uSdt + 0S;dW,

Model-free: An implicit representation of the system is derived using statistics and data sets.

eyrments e Tme ata Matrx Reinforcement Learning (RL): Data-driven control policy.

Numerical in Time

* 6 [o | Data is collected by interacting with the environment.
—D X= |x1 X2 - Xpo
||]
>

Laboratory

Objective: Improve state-of-the-art RL algorithms applied to
fluids-mechanics dynamical systems. Find data sampling
and processing strategies to obtain better control learning.

Historical

Data can be collected from a number of differents sources. Dynamic Mode
Decomposition: Data Driven Modeling Of Complex Systems, J. N. Kutz et al. (2016).

Kuramoto-Sivashinsky Equation

Definition (Controlled Kuramoto-Sivashinsky): 8v (:1: t) + v(z,t) av (z,t) = g_:zi(w t) — g Y (z,t) + ¢(u(z),t)

with periodic condition v(x + L,t) = v(z,t) where (z,t) € [0, L] x [0,T.

¢ is called control, u is called action.

L =16.000, tfny = 100.0, 6= 0250
100 . - - -

History:

- Derived in 1977-78
- Flame propagation (flame front)
- Reaction-Diffusion systems

60
Properties: -
- Spatio-temporal chaos 40
- 4" order non-linear PDE
- Stiffness 5

- Equilibria and relative equilibria
- Symmetries of solutions

0 20 40 60 80 100

T e . . X
Diffusion-Induced Chaos in Reaction Systems, Y. Kuramoto (1978). Time evolution of the Kuramoto Sivashinsky equation with L = 16.

Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations, G.I. Sivashinsky (1977).

Markov Decision Processes

Given a dynamical system z; .1 = G(x¢, u;)definedby G: X — X with u; € A, z; € X.
Note: A is called action space and X is called state space

Modelisation Hypothesis (our Dynamical System is a MDP): Transition Probability:
P((z,u), dz) is adistribution over X
X:Q-x8% U:.Q—- AN ((@,u), dz)
H,:= Xo, Uy, X1, Up, ..., Xe 1, U1, X Policy (Markovian stationary policy):

7(z,da) is a distribution over A

Process Distribution
P™ (dzg, duo, dz1,dus ..., dzy) = v (dzo)m (20, dug)P (dzs | 1, ur)m (22, dus) - -

T (@t-1, dug-1) P (dzy | T1-1, up-1)
Remark (Dynamical System case):

Transition probability is d{c (s, u.)} (dzz11) for deterministic
system (when model is given).

Markov Decision Processes

Policy (Markovian stati licy): Cost-per-stage:
olicy (Markovian stationary policy) ostperstage State-Action function (Q-function):
w(z,da) is a distribution over 4 c: XxA— R,
Example (Policy): Example (Cost-per-stage):
m(x,da) ~ N (pg,02) ¢(z,a) = [lz| + ||ul]
Criterion (Cost function): Optimal policy:

*

J;r* - Ef [Zi‘il vie (X, Ut)] = argminJ”

™

Statistics: Markov Decision Process estimation

Hypothesis (Parametric Statistics): Policy is parametrised by some vector 6 € Oie. T := Ty

Consequently, criterion becomes parametrised: J™ := J™ = J(0)

Optimal control policy is then given by 7y where 6* = argmin Jy(z)

ge®
Trajectories are sampled to estimate the process distribution:

Monte Carlo method (Estimation)
(i i i i i i
= (@], u], @y, T_g, Up g, Th)

To(0) = B [y ol (wr,)] =~ & 305, [2082 afe (2, af)]
Optimisation (Gradient Descent)
01 = 0 +nVJ(6;)

A

\

Trajectory sampling

Policy update
0« 0+ aVyJ()

e 3

Deep Deterministic Policy Gradient

In practice, 7T is a neural network perturbed by random noise and a more sophisticated algorithm based on
this concept is applied (DDPG").

Parametrisation of Q: Bell Equati
ellman Equation:

Let be a functional approximator parametrised b) * *

(2 be a functional approximator p ised by 3 JT = E] [Yrv'e (X, Uy)]

DDPG Policy: g) ()+ B [,]]
- = min eA[cw,u YEp |Jx]

mo(x) := fo(x) + N (u,0) ' '

minge 4 Q(z,) = minge 4 [C(-’B, u) + ’Y]E}ra; [Qw* (X, u)]]

YU

State-action update (Critic)))
Update Q by minimising: Q@,u) = c(z,u) +vE}, [JF]
L1(B) = E [(c(X,U) +vQ4(X, mo(X) — Q5(X,U)))?]

Policy update (Actor)
Update policy by minimising
Ly(0) = E[Jy'] = E[Qs(X, mp(X))]

L Continuous control with deep reinforcement learning, T. P. Lillicrap (2015).

Reinforcement Learning: Kuramoto-Sivashinsky environment

In the context of the Kuramoto-Sivashinsky equation:

environment

State and action spaces: "
X = L*([0,L]) ~ R

A= Lz([_a'a a]) = [_a7 a’]b

Cost is the energy of the system:

I I \
: s !
. I
_ 2 : -
C(m) - ||m||2 : "‘i‘f:;; control law : E
f=—"" [i
. . . . | 1
Control is a gaussian mixture weighted by Ui ~ 7 (X3, *) SSPRNSERR- ; R asmnp i
b 1 (z—=3)*
¢(U) — Zi—l Ui e CXP (_ 202
reinforcement learning <
. . . . P> sensor signal icy function rewar
The evolution of the system is performed with spatial and S ’ '] "°: yf: ‘_‘ ‘
actuator signal value function

temporal discretization with exponential time-differencing.

Schema of the reinforcement learning process for the Kuramoto-Sivashinsky dynamical system. Control
of Chaotic Systems by Deep Reinforcement Learning, M. A. Bucci et al. (2019).

Experiments: Stabilising the dynamics

Under L = 22 KS, has multiple steady-state solutions. Talechory typexsiate- free

Let fix one solution called E5.

Objective:
Stabilise the dynamics from Fsto Ey = 0.

Cost function c(z) = ||z — E,||

Configuration:
Method used: Deep Deterministic Policy Gradient (DDPG)
Policy (7Tg): two layers neural network, 64 hidden neurons
Optimiser: Adam', (Gradient Descent based)

Time steps: t € {0,...,100}
Actuators: equi-spaced along x-axis, b = 8

Experiments: Stabilising the dynamic

Linear Quadratic Regulator Reinforcement Learning

2.5
- 0.0
F—2.5

U

o -

0 10 20 30 40 50 60
T

| =—2.5

Linear Quadratic Regulator: Observations:
Controlled trajectory with RL is comparable with LQR.

Optimal control 4, of the linearised system: _ . .
- However, LQR control is more physically meaningful.

m’:D%’Sm + By u

Byu >~ ¢(u)

Experiments: Stabilising the dynamic

Linear Quadratic Regulator

oo -

0 10 20 30 40 50 60
T

Linear Quadratic Regulator:
Optimal control 74 ©f the linearised system:

x’:D%gm + By u

Byu ~ ¢(u)

Reinforcement Learning

0 10 20 30 40 50 60
100 - - 50
. m [
0 - =50
0 1 2 3 4 5 6 7 8
100
2.5
50 - 0.0
F—2.5
0
0 10 20 30 40 50 60
xXr
Observations:

- Controlled trajectory with RL is worst than with LQR
- However, RL control is more physically interpretable.

Conclusion

