
Reinforcement Learning as optimal
control for Shear Flows

Hosseinkhan Boucher, Rémy - Laboratoire Interdisciplinaire des Sciences du Numérique

Joint work with:

Semeraro, Onofrio
Mathelin, Lionel

Model-based vs. Model-free Control

Model-based: An explicit representation of the environment, system, is provided to design a control policy.

Example (Navier-Stokes equation for fluid models):

Example (Geometric Brownian Motion for stock prices):

Model-free: An implicit representation of the system is derived using statistics and data sets.

Data can be collected from a number of differents sources. Dynamic Mode
Decomposition: Data Driven Modeling Of Complex Systems, J. N. Kutz et al. (2016).

Reinforcement Learning (RL): Data-driven control policy.

Objective: Improve state-of-the-art RL algorithms applied to
fluids-mechanics dynamical systems. Find data sampling
and processing strategies to obtain better control learning.

Data is collected by interacting with the environment.

is called control,

with periodic condition where .

Kuramoto-Sivashinsky Equation

Definition (Controlled Kuramoto-Sivashinsky):

Properties:
- Spatio-temporal chaos
- 4th order non-linear PDE
- Stiffness
- Equilibria and relative equilibria
- Symmetries of solutions

History:
- Derived in 1977-78
- Flame propagation (flame front)
- Reaction-Diffusion systems

Time evolution of the Kuramoto Sivashinsky equation with L = 16.
1 Diffusion-Induced Chaos in Reaction Systems, Y. Kuramoto (1978).
2 Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations, G.I. Sivashinsky (1977).

is called action.

Transition Probability:Modelisation Hypothesis (our Dynamical System is a MDP):

Transition probability is for deterministic
system (when model is given).

Given a dynamical system defined by with

Markov Decision Processes

Remark (Dynamical System case):

Policy (Markovian stationary policy):

is a distribution over

is a distribution over

Note: is called action space and is called state space

Process Distribution

Markov Decision Processes

Policy (Markovian stationary policy):

Optimal policy:

Cost-per-stage:
is a distribution over

Example (Cost-per-stage):Example (Policy):

Criterion (Cost function):

State-Action function (Q-function):

Consequently, criterion becomes parametrised:

Statistics: Markov Decision Process estimation

Hypothesis (Parametric Statistics): Policy is parametrised by some vector i.e.

Optimal control policy is then given by where

Trajectories are sampled to estimate the process distribution:

Optimisation (Gradient Descent)

Trajectory sampling

Policy update

Monte Carlo method (Estimation)

Deep Deterministic Policy Gradient

In practice, is a neural network perturbed by random noise and a more sophisticated algorithm based on
this concept is applied (DDPG1).

1 Continuous control with deep reinforcement learning, T. P. Lillicrap (2015).

State-action update (Critic)

DDPG Policy:

Policy update (Actor)

Update Q by minimising:

Update policy by minimising

Let be a functional approximator parametrised by .

Parametrisation of Q:
Bellman Equation:

Reinforcement Learning: Kuramoto-Sivashinsky environment

In the context of the Kuramoto-Sivashinsky equation:

The evolution of the system is performed with spatial and
temporal discretization with exponential time-differencing.

Schema of the reinforcement learning process for the Kuramoto-Sivashinsky dynamical system. Control
of Chaotic Systems by Deep Reinforcement Learning, M. A. Bucci et al. (2019).

Cost is the energy of the system:

Control is a gaussian mixture weighted by :

State and action spaces:

Experiments: Stabilising the dynamics

Objective:
 Stabilise the dynamics from to .

Under KS, has multiple steady-state solutions.

Let fix one solution called .

Policy (): two layers neural network, 64 hidden neurons

Configuration:

Cost function

Optimiser: Adam1, (Gradient Descent based)

Time steps:

Method used: Deep Deterministic Policy Gradient (DDPG)

Actuators: equi-spaced along x-axis,

Experiments: Stabilising the dynamic

Observations:
- Controlled trajectory with RL is comparable with LQR.
- However, LQR control is more physically meaningful.

Linear Quadratic Regulator Reinforcement Learning

Linear Quadratic Regulator:
Optimal control of the linearised system:

Experiments: Stabilising the dynamic

Linear Quadratic Regulator Reinforcement Learning

Observations:
- Controlled trajectory with RL is worst than with LQR
- However, RL control is more physically interpretable.

Optimal control
Linear Quadratic Regulator:

of the linearised system:

Conclusion

